
A Comparison of Top-k Threshold Estimation Techniques
for DisjunctiveQuery Processing

Antonio Mallia
New York University

antonio.mallia@nyu.edu

Michał Siedlaczek
New York University

michal.siedlaczek@nyu.edu

Mengyang Sun†

Tsinghua University
sunmy19@mails.tsinghua.edu.cn

Torsten Suel
New York University
torsten.suel@nyu.edu

ABSTRACT
In the top-𝑘 threshold estimation problem, given a query 𝑞, the
goal is to estimate the score of the result at rank 𝑘 . A good estimate
of this score can result in significant performance improvements
for several query processing scenarios, including selective search,
index tiering, and widely used disjunctive query processing algo-
rithms such as MaxScore, WAND, and BMW. Several approaches
have been proposed, including parametric approaches, methods
using random sampling, and a recent approach based on machine
learning. However, previous work fails to perform any experimen-
tal comparison between these approaches. In this paper, we address
this issue by reimplementing four major approaches and compar-
ing them in terms of estimation error, running time, likelihood
of an overestimate, and end-to-end performance when applied to
common classes of disjunctive top-𝑘 query processing algorithms.
ACM Reference Format:
Antonio Mallia, Michał Siedlaczek, Mengyang Sun, Torsten Suel. 2020. A
Comparison of Top-k Threshold Estimation Techniques for Disjunctive
Query Processing. In Proceedings of the 29th ACM Int’l Conference on In-
formation and Knowledge Management (CIKM’20), Oct. 19-23, 2020, Virtual
Event, Ireland. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3340531.3412080

1 INTRODUCTION
A lot of research has focused on how to efficiently execute queries
in large search engines. This is often modeled as a top-𝑘 query pro-
cessing problem: Given a document collection and associated index
structures, a scoring function 𝑟 , and a query 𝑞, the goal is to retrieve
the 𝑘 documents with the highest scores. Disjunctive top-𝑘 query
processing, where all documents containing at least one query term
are considered, is often used to obtain an initial set of candidate
results that are then reranked using more complex machine-learned
ranking functions. Many algorithms for disjunctive top-𝑘 query
processing have been proposed, including MaxScore [25], WAND
[4], and Block-Max methods such as [8, 9, 16, 17].

We consider a closely related problem, top-𝑘 threshold estima-
tion, where we need to estimate the score of the𝑘-th highest scoring
†Work done while the author was at New York University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412080

document for a given query, preferably in a fraction of the time it
would take to execute the query. Threshold estimation has been
used to improve query processing efficiency in two main scenarios.
First, threshold estimation can be used for resource selection in
distributed search architectures such as selective search [12] and
index tiering [3, 15, 18, 21]. In this case, by estimating the top-𝑘
thresholds for different index shards and tiers, we can estimate
how many top-𝑘 results are contributed by each shard and tier.
Thus, threshold estimation provides useful features to decide which
parts of the index should be searched; see [2, 5] for examples in the
context of selective search.

Second, it is well known [6, 7, 9, 11, 19] that good threshold esti-
mates can boost the efficiency of top-𝑘 disjunctive query processing
algorithms such as MaxScore [25], WAND [4], and Block-Max based
methods [9, 16]. In this scenario, a strong initial estimate of the
top-𝑘 threshold allows these algorithms to skip the evaluation of
documents whose score cannot reach the threshold – though the
precise way this is exploited depends on the algorithm.

Note that in this second scenario, it is not enough to get a good
threshold estimate – we also need to limit the number of overesti-
mates, since running the query algorithm with a too-high threshold
estimate will result in less than 𝑘 results above the threshold. To
guarantee retrieval of the correct top-𝑘 results, we would then need
to rerun the query at significant additional cost. This is in contrast
to the first scenario of resource selection for unsafe methods such
as selective search and index tiering, where overestimates are ac-
ceptable as long as the estimate is a useful feature for resource
selection. On the other hand, we have more stringent efficiency
requirements for threshold estimation in this case, since we need
to obtain an estimate for each index shard.

In this paper, we perform the first experimental comparison of
existing techniques for top-𝑘 threshold estimation. Our comparison
includes the Taily approach [2], the 𝑄𝑘 method [6, 11, 26], the re-
cently proposed BLR approach [19], and a method based on random
sampling. We report the precision of the threshold estimates, the
percentage of overestimates, the efficiency of the methods, and the
resulting end-to-end performance improvements when used in the
MaxScore, WAND, and BMW query processing algorithms.

2 ESTIMATION ALGORITHMS
We now briefly describe the main existing approaches.

Taily: This method was proposed in [2] in the context of shard
selection in selective search. The basic idea is simple. It is observed
that the top results for disjunctive queries are typically dominated
by conjunctive results, and that the scores of the top conjunctive
results for certain ranking functions can be approximated by a
Gamma distribution, derived from the mean and variance of the

https://doi.org/10.1145/3340531.3412080
https://doi.org/10.1145/3340531.3412080
https://doi.org/10.1145/3340531.3412080

scores. These distributions and the term frequencies are then used
to estimate the score threshold.

Taily assumes that the scoring function is the sum of term scores,
which is true for cases such as BM25 and Query Likelihood Model
(QL) [20]. The assumption of a Gamma distribution is justified for
QL, but not really for BM25. Finally, as 𝑘 increases, the difference
between disjunctive and conjunctive score distributions becomes
significant. On the plus side, estimation with Taily is very fast.

Simple Quantile-Based Prediction: Work in [6] and [11] pro-
poses to precompute the 𝑘-highest impact score for each term and
store it in the index lexicon. Clearly, the top-𝑘 threshold of a query
can be lower-bounded by the maximum of the 𝑘-th highest impact
scores of the query terms. Following [19], we refer to this method
as 𝑄𝑘 . It is extremely fast, and never results in an overestimate.

Predictors based on Machine Learning: Recent work in [19]
proposed methods based on machine learning. One, called BLR, is
based on Bayesian Linear Regression, while two others, MLP-L2
and MLP-L4, use multi-layer perceptrons with two and four hidden
layers, respectively. Both approaches enable a trade-off between
the overestimation rate and the precision of the estimate.

Experiments in [19] indicate that BLR performs best, and thus
we compare to BLR only. One disadvantage of both approaches is
that they are much slower than Taily and𝑄𝑘 , and they require very
significant amounts of feature data to be added to the index.

Random Sampling: Random sampling is of course widely used
in Computer Science, and can also be applied to threshold estima-
tion. A fairly straightforward approach selects a sample of, say,
around 1% of the document collection, by selecting each document
independently with probability 0.01. Then the incoming query is
run on the sample, and the top-𝑘 ′ threshold on the sample is used
as an estimate of the top-𝑘 threshold on the full collection.

This leads to a trade-off between the precision of the estimate
and the rate of overestimates, where a larger 𝑘 ′ results in fewer
overestimates and less precision. In particular, given 𝑘 , 𝑘 ′, and
sample rate 𝑠 , the probability of an overestimate is the probability
that more than 𝑘 ′ − 1 of the top (𝑘 − 1) query results were selected
into the sample, which is

∑𝑘−1
𝑖=𝑘′

(𝑘−1
𝑖

)
· 𝑠𝑖 (1 − 𝑠)𝑘−𝑖−1.

Random sampling has been previously used for resources se-
lection in distributed search, including [13, 22–24], though not in
the exact formulation above. The speed and space consumption of
sampling depends linearly on the sample size, but is typically much
higher than for Taily and 𝑄𝑘 and more comparable to BLR.

Higher-Order Quantile Methods: A natural way to improve
the quantile-based method is to store the k-th highest scores for
certain sets of terms instead of just individual terms. One approach
recently proposed in [26] caches the top-k thresholds of past queries,
and then estimates the threshold of a future query by looking at
past queries contained in the query. We propose and evaluate two
related methods, called𝑄2

𝑘
and𝑄3

𝑘
, that store the 𝑘-th highest scores

for certain pairs and triplets of terms, respectively. At preprocessing
time, suitable pairs and triplets are selected, and disjunctive queries
are issued to compute their 𝑘-th highest scores. At estimation time,
we use the maximum score over all query terms and all applicable
query pairs and triplets.

We consider two approaches for selecting pairs and triplets. In
the log-based approach, called 𝑄2

𝑘
-𝑙𝑜𝑔, we select pairs that occur

frequently in a training query log, while the other approach,𝑄2
𝑘

-𝑙𝑒𝑥 ,
uses term frequencies in the lexicon to choose pairs (and similarly
for triplets). The resulting methods use more space than 𝑄𝑘 , but
are still very fast, and much more accurate.

Sampling-Quantile Hybrid: It was suggested in [19] to com-
bine BLR with 𝑄𝑘 by choosing the estimate provided by 𝑄𝑘 when-
ever it is higher than that from BLR. We adopt this idea by combin-
ing random sampling with 𝑄3

𝑘
-𝑙𝑜𝑔, which was the most promising

combination after an initial round of experiments.
Sampling with Dochits: This method attempts to decrease the

sample size, and thus running time, by exploiting the significant
skew in the rates at which documents are returned in the top 𝑘 ,
similarly to [1, 10]. During preprocessing, a large query trace is
executed on the collection, and we record the number of times each
document is returned in the top 𝑘 , called dochits. This distribution
is highly skewed, with a fraction of the documents responsible for a
majority of total dochits. This can be exploited as follows: We first
take, say, a 1% sample, but only keep the documents in the sample
with the highest dochits values, until, say, 𝑡 = 80% of the total
dochits in the 1% sample are covered. Through careful selection
of parameters 𝑘 ′, 𝑠 , and 𝑡 , a better trade-off between precision and
running time can be achieved for the same overestimation rate.

3 EXPERIMENTAL RESULTS
Test Environment: All algorithms were reimplemented in C++17,
and compiled with GCC 7.4.0 with the highest optimization set-
tings. All runs are performed on a machine with 8 Intel Core i7-
4770 Haswell cores clocked at 3.50GHz, with 32GiB RAM, running
GNU/Linux 4.15. Our source code is publicly available1 for readers
interested in replicating the experiments.

Data Sets: We built inverted indexes for a commonly used docu-
ment set, ClueWeb09B, consisting of roughly 50 million documents.
The terms in the collection were lowercased and stemmed using
the Porter2 stemmer; no stopwords were removed. Document IDs
were assigned according to lexicographic order of their URLs. The
inverted index was compressed using SIMD-BP128 [14]. Unless
stated otherwise, we assume the BM25 scoring function.

To test estimation performance and resulting end-to-end query
processing speed, we used TREC 2005 Terabyte Track Efficiency
Task data and a combination of the the TREC 2007, 2008, and 2009
Million Query Track topics. (Due to space limitations, only results
for the former are included here; results were very similar for the
other set.) We selected 5000 random test queries, excluding single
term queries, and left the rest as training queries for the BLR method.
We also used the AOL query trace to select pairs and triplets in 𝑄2

𝑘

and𝑄3
𝑘

, and to estimate dochits for the method combining sampling
and dochits, as these methods require much larger training sets.

Evaluation Metrics: We evaluate our implementations with
respect to precision, rate of overestimates, running time, and end-
to-end performance improvements when used in conjunction with
the MaxScore, WAND, and BMW query processing algorithms.

There is a trade-off between precision and rate of overestimates
for all methods, except the quantile-based ones, which have no
overestimates. We decided to compare the various methods by
limiting the rate of overestimates to some value, say 1% or 0.1%,
1https://github.com/pisa-engine/topk-threshold-estimation

https://github.com/pisa-engine/topk-threshold-estimation

10 1000
Original BLR Our BLR Original BLR Our BLR

Quant. O% MUF O% MUF O% MUF O% MUF

0.50 59.86 0.89 59.76 0.89 57.32 0.88 57.46 0.88
0.30 28.80 0.88 28.88 0.88 32.10 0.86 32.38 0.86
0.10 8.44 0.79 8.54 0.79 8.36 0.80 8.54 0.80
0.05 5.74 0.74 5.86 0.74 4.32 0.75 4.40 0.75
0.01 2.90 0.64 2.86 0.64 1.26 0.65 1.40 0.65

Table 1: Comparison between our implementation of BLR
and the one in [19], for 𝑘 = 10 and 𝑘 = 1000.

and then choosing parameters for each method to achieve this value.
For sampling, this means setting 𝑘 ′ appropriately, while for BLR
we set parameters as discussed in [19]. For Taily, which was not
designed to support a limit in the rate of overestimates, we choose a
suitable 𝑘 ′ > 𝑘 and then use the top-𝑘 ′ threshold estimate. We then
compare precision and efficiency for each rate of overestimates.

There are a many measures for precision, such as mean square
error (MSE) or mean absolute error (MAE). We adopted instead
the mean under-prediction fraction (MUF) measure used in [19],
which is the mean fraction of the predicted threshold and the actual
threshold for those queries where no overestimate occurred. A good
method should have MUF close to 1.0 with few overestimates.

Implementation Notes: Our BLR is a complete reimplemen-
tation in C++ of the Bayesian Linear Regression model used in [19].
Our implementation was validated against the original version and
achieved almost identical results, as shown in Table 1. The original
implementation was in Python and not optimized for efficiency as
stated in [19]. Taily was reimplemented based on the description
in [2]. To limit overestimate rates, we experimentally determined
values 𝑘 ′ > 𝑘 that achieve those rates. Our Sample method builds
an inverted index on a random document sample, and then uses
MaxScore to perform top-𝑘 ′ query processing on this index. To
choose the pairs in 𝑄2

𝑘
-𝑙𝑜𝑔 and pairs and triplets in 𝑄3

𝑘
-𝑙𝑜𝑔, we took

all unique queries in the AOL query log and added any pairs and
triplets that occur, resulting in about 13 million pairs and 60 million
triplets. In the 𝑄2

𝑘
-𝑙𝑒𝑥 methods, a pair was added if both inverted

lists were longer than 216, leading to about 100 million pairs. For the
hybrid, 10 million AOL queries were run to obtain dochits values
for the documents in the collection.

2 3 4 5 6+ avg
𝑄𝑘 0.79 0.69 0.62 0.59 0.55 0.70
𝑄2
𝑘

-𝑙𝑒𝑥 0.96 0.89 0.83 0.79 0.72 0.89
𝑄2
𝑘

-𝑙𝑜𝑔 0.99 0.91 0.86 0.81 0.75 0.91
𝑄3
𝑘

-𝑙𝑜𝑔 0.99 0.96 0.93 0.90 0.83 0.95
Taily 0.48 0.22 0.04 0.02 0.00 0.26
BLR 0.56 0.64 0.68 0.71 0.71 0.63
Samp-0.2% 0.89 0.89 0.88 0.88 0.89 0.89
Samp-1% 0.94 0.94 0.94 0.94 0.94 0.94
Hybrid 0.99 0.97 0.94 0.93 0.91 0.97

Table 2:MUF for different methods and query lengths, with
O% ≤ 1% and 𝑘 = 1,000.

Comparing BLR and Sampling: In Figure 1, we compare sam-
pling and BLR in terms of speed and MUF, for various rates of
overestimates. In terms of speed, BLR is faster than a 0.5% or 1%
sample, but slower than the smaller sample sizes. In terms of MUF,

O% 50 10 1 0.1
𝑄𝑘 - - - 0.79
𝑄2
𝑘

-𝑙𝑜𝑔 - - - 0.93
𝑄3
𝑘

-𝑙𝑜𝑔 - - - 0.96
Taily 0.55 0.51 0.38 0.32
Samp-0.2% 0.94 0.91 0.87 0.84
Samp-1% 0.97 0.96 0.94 0.92
Hybrid 0.98 0.98 0.97 0.97

Table 3: MUF using Query Likelihood as ranking function.

BLR is clearly worse than sampling at every rate of overestimates,
even when compared to the smallest 0.1% sample. Thus, BLR does
not seem to offer any improvements over straightforward sampling.
We also show in purple data points for the method combining sam-
pling and dochits, where we attempted to match the precision of
a 1% sample with a smaller sample that allows faster estimates.
Similar speed-ups can also be obtained for the other sample sizes.

Comparing MUF Across all Methods: In Table 2, we can see
MUF results for all our methods, and for different query lengths,
for a 1% rate of overestimates and 𝑘 = 1000. We note that Taily is
by far the worst method, with MUF always below 0.5 and falling
with query length. 𝑄𝑘 and BLR are the next worst methods, where
𝑄𝑘 does better for short queries and BLR for longer ones. The
Sample methods are not impacted by query length, as predicted by
the theoretical analysis. A 1% sample does of course better than a
smaller 0.2% sample, but also takes more time.

We also see that 𝑄2
𝑘

-𝑙𝑒𝑥 , 𝑄2
𝑘

-𝑙𝑜𝑔 and 𝑄3
𝑘

-𝑙𝑜𝑔 all achieve signif-
icant boosts over 𝑄𝑘 , making the methods competitive with the
Sample methods. Log-based methods appear to perform better than
methods using collection statistics to select pairs, and the perfor-
mance of 𝑄3

𝑘
-𝑙𝑜𝑔 is particularly impressive. As one would expect,

these methods do best for shorter queries, while for longer queries
Sample methods can do better. This motivated our hybrid method
combining 𝑄3

𝑘
-𝑙𝑜𝑔 and a 0.2% sample, which is the overall best

shown (slight improvements would be obtained by using a larger
sample). Note that the relative performance of the methods was the
same for other rates of overestimates.

Comparing MUF for QL Scoring: In Table 3, we show MUF
when using a query likelihood scoring function instead of BM25,
for various rates of overestimates. We do not show results for BLR,
as this would require recomputing a new set of features. Since the
quantile-based methods always have zero overestimates, we only
compare them to other methods on a 0.1% rate of overestimates.
Relative performance of the various methods is similar to Table 2.
Note in particular that Taily is still the worst, and performs only
slightly better on QL than on BM25.

Time and Space: Due to page constraints, we can only briefly
discuss estimation times and space requirements. Taily and the
quantile-based methods are extremely fast, taking at most a few
microseconds per estimate. Speeds for BLR and Sample were shown
in Figure 1, with running times in the tens to hundreds of microsec-
onds. The time for the hybrid is dominated by the Sample method.
Taily and 𝑄𝑘 use fairly little space, while the other methods use
extra space on the order of a few percent of index size. BLR uses the
most space, at least as described in [19], though this could probably
be significantly reduced through appropriate engineering.

End-to-End Performance: We conclude with a comparison of
the performance boosts achieved when using threshold estimation

0.4 0.5 0.6 0.7 0.8 0.9 1.0
MUF

50

100

250

500

1000

Ti
m

e
[µ

s]

Samp-0.1%
Samp-0.2%
Samp-0.5%
Samp-1%
Samp-dochits
BLR

O%=0.1
O%=1

O%=10
O%=50

Figure 1: Estimation running time and MUF for sampling methods and BLR, for several rates of overestimates.

- 𝒪 𝑄𝑘 𝑄2
𝑘

-𝑙𝑜𝑔 𝑄3
𝑘

-𝑙𝑜𝑔 Taily BLR Samp-0.2% Hybrid

𝑘

10

MaxScore 20.01 18.43 19.62 19.33 19.13 19.68 19.62 19.90 19.68
WAND 24.82 23.05 24.34 24.21 24.10 24.21 24.46 24.67 24.21
BMW 15.42 11.79 15.11 14.41 13.65 15.18 15.03 15.08 13.70

10
0 MaxScore 24.74 22.00 23.88 23.35 22.81 24.48 24.26 23.95 22.99

WAND 29.96 26.56 29.32 28.87 28.50 29.73 29.33 29.48 28.75
BMW 24.63 18.92 24.22 22.16 21.13 24.64 23.98 23.45 21.02

10
00 MaxScore 35.73 28.03 33.60 31.47 30.10 35.40 34.00 32.36 29.94

WAND 44.53 34.15 40.21 38.61 37.21 43.24 41.00 38.68 37.06
BMW 43.45 30.53 40.29 36.66 34.58 42.66 41.08 37.70 34.06

Table 4: Query processing speed (in milliseconds) for ClueWeb09B and the TREC 2005 query log (O% ≤ 1%).

in highly tuned implementations of three well-known disjunctive
top-𝑘 algorithms, MaxScore, WAND, and BMW, shown in Table 4.
The first and second columns are the execution times with an initial
threshold set to zero and to a perfect oracle value, respectively. We
see that for 𝑘 = 1000, the Hybrid method always does best, while for
𝑘 = 10, 𝑄3

𝑘
-𝑙𝑜𝑔 does best. This is because for smaller 𝑘 the potential

gain of using threshold estimation is limited, and thus the cost of
using sampling in the hybrid is higher than the gain.

4 DISCUSSION AND CONCLUDING REMARKS
In this paper, we have performed an experimental comparison of
top-𝑘 threshold estimation methods. Our results show the best
performance for quantile-based and sampling-based methods, and
in particular for a hybrid of these. In particular, the 𝑄2

𝑘
-𝑙𝑜𝑔 and

𝑄3
𝑘

-𝑙𝑜𝑔 methods can give very good threshold estimates in a few
microseconds with zero overestimates, while a hybrid combining
𝑄3
𝑘

-𝑙𝑜𝑔 and sampling gives even better results in scenarios such as
top-1000 query processing where it is acceptable to spend up to a
few hundred microseconds for a better estimate.

There are several open problems that can lead to further improve-
ments. A better selection of pairs and triplets for the quantile-based
methods should result in more precise estimates or smaller space
requirements. Our use of dochits in the sampling approach seems
somewhat clumsy, and we suspect there are more elegant biased
sampling approaches that will perform better.
Acknowledgements. This research was supported by NSF Grant
IIS-1718680 and a grant from Amazon.

REFERENCES
[1] I. S. Altingovde, R. Ozcan, and Ö. Ulusoy. 2012. Static Index Pruning in Web

Search Engines: Combining Term and Document Popularities with Query Views.
ACM Trans. Inf. Syst. 30, 1 (2012).

[2] R. Aly, D. Hiemstra, and T. Demeester. 2013. Taily: Shard Selection Using the Tail
of Score Distributions. In SIGIR. 673–682.

[3] R. Baeza-Yates, V. Murdock, and C. Hauff. 2009. Efficiency Trade-Offs in Two-Tier
Web Search Systems. In SIGIR. 163–170.

[4] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. 2003. Efficient
Query Evaluation Using a Two-Level Retrieval Process. In CIKM.

[5] Z. Dai, Y. Kim, and J. Callan. 2017. Learning to rank resources. In SIGIR. 837–840.
[6] L. L. S. de Carvalho, E. S. de Moura, C. M. Daoud, and A. S. da Silva. 2015.

Heuristics to Improve the BMW Method and Its Variants. JIDM 6, 3 (2015).
[7] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. 2013. A Candidate Filtering

Mechanism for Fast Top-k Query Processing on Modern Cpus. In SIGIR. 723–732.
[8] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. 2013. Optimizing Top-k Document

Retrieval Strategies for Block-Max Indexes. In WSDM.
[9] S. Ding and T. Suel. 2011. Faster Top-k Document Retrieval Using Block-Max

Indexes. In SIGIR. 993–1002.
[10] S. Garcia. 2007. Search engine optimisation using past queries. Ph.D. Dissertation.

RMIT University, Melbourne, Australia.
[11] A. Kane and F. Wm. Tompa. 2018. Split-Lists and Initial Thresholds for WAND-

based Search. In SIGIR. 877–880.
[12] A. Kulkarni and J. Callan. 2015. Selective search: Efficient and effective search of

large textual collections. TOIS 33, 4 (2015), 1–33.
[13] A. Kulkarni, A. S. Tigelaar, D. Hiemstra, and J. Callan. 2012. Shard Ranking and

Cutoff Estimation for Topically Partitioned Collections. In CIKM. 555–564.
[14] D. Lemire and L. Boytsov. 2015. Decoding Billions of Integers Per Second Through

Vectorization. Software: Practice and Experience 45, 1 (2015), 1–29.
[15] G. Leung, N. Quadrianto, A. J. Smola, and K. Tsioutsiouliklis. 2010. Optimal

Web-Scale Tiering as a Flow Problem. In NIPS. 1333–1341.
[16] A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. 2017. Faster

BlockMax WAND with Variable-Sized Blocks. In SIGIR.
[17] A. Mallia and E. Porciani. 2019. Faster BlockMax WAND with longer skipping.

In European Conference on Information Retrieval. 771–778.
[18] A. Ntoulas and J. Cho. 2007. Pruning Policies for Two-Tiered Inverted Index with

Correctness Guarantee. In SIGIR. 191–198.
[19] M. Petri, A. Moffat, J. Mackenzie, J. S. Culpepper, and D. Beck. 2019. Accelerated

Query Processing Via Similarity Score Prediction. In SIGIR. 485–494.
[20] Jay M Ponte and W Bruce Croft. 1998. A language modeling approach to infor-

mation retrieval. In SIGIR. 275–281.
[21] K. M. Risvik, Y. Aasheim, and M. Lidal. 2003. Multi-Tier Architecture for Web

Search Engines. In Proc. of the First Conf. on Latin American Web Congress. 132.
[22] L. Si and J. Callan. 2002. Using Sampled Data and Regression to Merge Search

Engine Results. In SIGIR. 19–26.
[23] L. Si and J. P. Callan. 2003. Relevant document distribution estimation method

for resource selection. In SIGIR. 298–305.
[24] P. Thomas and M. Shokouhi. 2009. SUSHI: Scoring Scaled Samples for Server

Selection. In SIGIR. 419–426.
[25] H. Turtle and J. Flood. 1995. Query Evaluation: Strategies and Optimizations.

Information Processing & Management 31, 6 (1995), 831–850.
[26] E. Yafay and I. S. Altingovde. 2019. Caching Scores for Faster Query Processing

with Dynamic Pruning in Search Engines. In CIKM. 2457–2460.

	Abstract
	1 Introduction
	2 Estimation Algorithms
	3 Experimental Results
	4 Discussion and Concluding Remarks
	References

