
Everything You Always Wanted to Know About Search
(But Were Afraid to Ask)

Rome | March 22 - 23, 2019

Antonio Mallia

!2

About me

! me@antoniomallia.it

! @antonio_mallia

" amallia

in/antoniomallia

! www.antoniomallia.it

☼ New York City

I am currently pursuing a Ph.D. with a focus on advancing efficiency in Information Retrieval for large-scale

systems. I am part of the Web Exploration and Search Technology Lab at New York University where I explore

new techniques and architectures for web search and related problems.

mailto:me@antoniomallia.it
https://twitter.com/antonio_mallia
https://www.github.com/amallia
https://www.linkedin.com/in/antoniomallia/
https://www.antoniomallia.it

!3

Agenda

• Learn about Information Retrieval (IR)

• How a search engine works

• How crawling works

• Indexing of documents

• Query processing

• Ranking

• Search Quality Evaluation

• Image search

• Alerts

!4

Not All About Search

Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within large collections.

Nowadays, Information Retrieval goes beyond building just search engines!

!5

Question Answering

!6

Geo and Trajectory Search

!7

Image and Music Retrieval

!8

Conversational search

Crawling

!10

Crawling

Basic idea:
• start at a set of known URLs - explore the web in “concentric circles” around these URLs
• rely on the hyperlinks between web pages to discover new URLs

Undiscovered

Downloaded Frontier
Seed

!11

Crawling

Crawling System: fetches pages, design to be
fast and simple
Crawling Application: decides what to crawl
next according to a crawling strategy

How to keep track of pages already crawled?
Bloom filters

WebCrawling
Application

Crawling
System

Repository

URL request

Page downloaded

robots.txt DNS
Cache

Seen
URLs

Large engines crawl billions of pages per day, so
they must be efficient!
Distributed crawling:
• dynamic: central coordinator dynamically

assigns URLs to crawlers
• static: Web is statically partitioned and assigned

to crawlers

!12

Bloom Filter

A Bloom filter is a probabilistic data-structure with two operations:

•  Insert(x) inserts an item into the BF
•  Exist(x) checks if x was previously inserted in the BF

A Bloom filter can have false positives, but no false negatives.

Bloom filters achieve good trade-off between space and fpr.

11 00 10 00 10 00 10 10 00 1 01

H(x) H(y) H(z)

h1(x) h2(x)
h3(x)

!13

Crawling

How to crawl?
• best pages first
• avoid duplicate
• robots.txt, minimize load
• spider traps

Open Source Crawler:
• StormCrawler - http://stormcrawler.net/
•Apache Nutch - https://nutch.apache.org/
•Heritrix - https://github.com/internetarchive/heritrix3
•BUbiNG - https://github.com/LAW-Unimi/BUbiNG
•wget

How much to crawl?
• coverage. How much to cover?
• how much do competitors have
• some pages are more

important than others

How often to crawl?
• freshness
• estimating change

probabilities based on
observation

!14

WARC - Web ARChive

You can read more at https://iipc.github.io/warc-specifications/

WARC/1.0
WARC-Type: response
WARC-Date: 2013-12-04T16:47:32Z
WARC-Record-ID:
Content-Length: 73873
Content-Type: application/http; msgtype=response
WARC-Warcinfo-ID:
WARC-Concurrent-To:
WARC-IP-Address: 23.0.160.82
WARC-Target-URI: http://102jamzorlando.cbslocal.com/tag/nba/page/2/
WARC-Payload-Digest: sha1:FXV2BZKHT6SQ4RZWNMIMP7KMFUNZMZFB
WARC-Block-Digest: sha1:GMYFZYSACNBEGHVP3YFQNOSTV5LPXNAU

HTTP/1.0 200 OK
Server: nginx
Content-Type: text/html; charset=UTF-8
Vary: Accept-Encoding
Vary: Cookie
X-hacker: If you're reading this, you should visit automattic.com/jobs and apply to join the fun, mention this header.
Content-Encoding: gzip
Date: Wed, 04 Dec 2013 16:47:32 GMT
Content-Length: 18953
Connection: close

…HTML Content…

Archive format which specifies a
method for combining multiple
digital resources into an
aggregate archive file together with
related information.

WARC is a standard way to store
the raw crawl data.

https://iipc.github.io/warc-specifications/

Indexing

!16

Parsing

• Normalization of terms: deleting hyphens and
punctuation, i.e. U.S.A. and USA

• Case folding: reduce all letters to lower case i.e. Rome
vs. rome

What format is it in? 
What language is it in?

Tokenization

Stopping

Thesauri

Stemming

Parser Identification

Split text into tokens

Remove common words

Synonyms and homonyms

Reduce terms to their roots
• Produce morphological variants of a root/base

word, i.e. cool, cooler, coolest
• uses lists of related words (dictionary-based) or

algorithm to determine related words

• Rewrite to form equivalence-class terms
• Hand-construct equivalence classes, i.e. car =

automobile

• Stopwords: common words, i.e. the, a, and, to
• Stopwords carry little semantic content

• A classification problem.
• Language is needed by further steps.

!17

Indexing

Terms ={codemotion, cool, conference, rome, capital, city, italy, beautiful, world, search, engine}

T1 codemotion # [1, 2]

T2 cool # [1, 5]

T3 conference # [1, 2, 6]

T4 rome # [1, 2, 3, 4, 6]

T5 capital # [3]

T6 city # [3, 4]

T7 italy # [3]

T8 beautiful # [4]

T9 world # [4]

T10 search # [5, 6]

T11 engine # [5, 6]

Codemotion
Rome is

the coolest
conference! I was

in Rome
for the

Codemotion
conference

2

Rome is
the capital

city of
Italy

3
1

Rome is the
most

beautiful city
in the world

4
Search
engines

are very cool
too

5

I’d like a
conference

about search
engines in

Rome.

6

!18

Inverted Index Layout

The list of the documents for a given term is called a posting list.

• Posting lists are usually divided in blocks of fixed size

• Each block can be individually encoded and decoded

• This allows to jump forward without uncompressing all entries

… …Block Block Block Block Block

DocIDs Freqs PosMetadata

2, 15, 24, 32, 67, …

Skip Lists

1, 8, 2, 0, 14, … 25, 14, 128, 45, 3, 2, 32, …

128 doc IDs 128 frequencies All positions for 128 docs

!19

Index Maintenance

Three operations need to be supported:

• Insert: keep a buffer and re-build when big enough

• Delete: tombstone and remove when re-building

• Update: update the frequencies and remove if needed when re-building

!20

Delta-Gap Encoding

Posting lists are sequences of integers

Document IDs can be large numbers, but differences are small

Documents IDs are typically stored in increasing order

3 15 40 4418 46 50 54

3 12 12 43 2 4 4

= - - - - - - -

!21

Variable Byte
3 15 133 14107121

0|0000011 0|0001111

8-bit

0|0010101

0|0000101

1|0000001

1|1001110

1|0001000

0|0001111

16-bit 24-bit8-bit 8-bit

Small values need fewer bits to be represented than larger values. The majority of the values
are small.

The last 7 bits of a byte are the payload, the first bit of the byte is a continuation bit.

Continuation bit is 1 for the last byte of the encoded value and to 0 otherwise. Keep reading
until you find a continuation bit equal to 0.

!22

Patched Frame-of-reference (PFor)

1. Find B, which indicates how many bits are needed to encode “most” of the elements in the list

2. Encode B using 8 bits (always enough to encode any value between 1 and 64)

3. Store the values that can be written using B bits

4. Store the exceptions at the end of the list using fix-length encoding

3 15 133 14107121

2-bit 4-bit 8-bit 18-bit5-bit

8-bits 4 x 8-bits 32-bits

Query Processing

!24

Query processing

ML Rank

$%

Query

& &

"

Lookup

terms postings list

Process Rank

AND
OR

NOT

top-k results

Inverted
Index Model

'

!25

Term-at-a-time (TAAT) vs Document-at-a-time (DAAT)

Term-at-a-time

• Process one inverted list at a time,
from shortest to longest list

• Accumulator is needed

Document-at-a-time

• all inverted lists in the query are
traversed simultaneously from left
to right

• DAAT uses no extra space

T2

T1

T3

T2

T1

T3

!26

Boolean Retrieval

cool AND conference AND rome

Codemotion
Rome is

the coolest
conference!

1

T2 cool # [1, 5]
T3 conference # [1, 2, 6]
T4 rome # [1, 2, 3, 4, 6]

T2 ∩ T3 ∩ T4 =[1, 5] ∩ [1, 2, 6] ∩ [1, 2, 3, 4, 6] = [1]

T2 T3

T4 R1

∩

∩

R2

Operators:
• AND
• OR
• NOT

Query rewriting: different orders evaluate to the same
result, but could not be equally efficient

!27

Scoring Functions

Scoring function assigns score to each document with respect to a given query.

It allows to return only the top-k documents with highest scores, which enables
several optimizations.

Popular functions:
• Cosine similarity

• Tf-idf

• BM25

• Language models

Ranking

!29

Cascade Ranking

BM25 Complex
Ranker1000 100

First-phase
ranking

Second-phase
ranking

Third-phase
ranking

Complex
Ranker 10

• Complex Ranking Functions are expensive

• Machine Learning models require hundreds of features

• Perform re-ranking on subset of documents

• Build a multi-level architecture, from simpler to more complex

!30

The Web as a graph

Link counts as simple measures of
popularity:
• Undirected popularity: each page

gets a score given by the number of in-
links plus the number of out-links.

• Directed popularity: score of a page
equal to the number of its in-links.

More complex techniques include
Pagerank, as a form of actual voting.
Designed by Page & Brin as part of a
research project that started in 1995 and
ended in 1998 with the creation of
Google.

!31

Learning to Rank

Learning to Rank is the problem of ranking objects by using machine learning techniques.

Most popular algorithms are LambdaMART, Gradient Boosting, RankSVM.

Open Source implementations:

• LightGBM - https://github.com/Microsoft/LightGBM
• RankLib - https://sourceforge.net/p/lemur/wiki/RankLib/
• XGBoost - https://github.com/dmlc/xgboost
• jforest - https://github.com/yasserg/jforests
• SVMrank - http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Query #1
Query #2
Query #i

…
Query #n

Dataset

Document #1
Document #2
Document #j

…
Document #n

= yji qid feature vector

Relevance
label

Query
ID Features

https://github.com/Microsoft/LightGBM
https://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/dmlc/xgboost
https://github.com/yasserg/jforests
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Evaluation

!33

Search Quality Evaluation

How do you tell if users are happy?

An assessment of either Relevant or Non-relevant
for each query and each document.

Also called relevance judgments.

• Human judgments, can be expensive and slow
• Click models

Open source libraries:

• RRE - https://github.com/SeaseLtd/rated-ranking-evaluator
• trec_eval - https://github.com/usnistgov/trec_eval
• pytrec_eval - https://github.com/cvangysel/pytrec_eval

https://github.com/SeaseLtd/rated-ranking-evaluator
https://github.com/usnistgov/trec_eval
https://github.com/cvangysel/pytrec_eval

!34

Search Quality Evaluation

Evaluation measures:

•Precision: the fraction of retrieved documents that are relevant.
•Recall: the fraction of relevant documents that are retrieved.
•NDCG: Normalized Discounted Cumulative Gain; normalized sum of the graded

relevance proportionally penalized with the position of the result.
•Reciprocal Rank: it is the multiplicative inverse of the rank of the first "correct"

answer.
•Mean Reciprocal Rank: the average of the reciprocal ranks computed at query level.
•Mean Average Precision: the mean of the average precisions computed at query

level.
•F-Measure: it measures the effectiveness of retrieval with respect to a user who

attaches β times as much importance to recall as precision.
•Average Precision: the area under the precision-recall curve

!35

Spam

Large amount of pages are generated or manipulated to achieve high rankings in search engines

• Textual Methods: change content of page so that pages appears highly relevant

• Link-Based Methods: create artificial in-coming links to that a page has very high Pagerank

How to contrast spam?

• use machine learning classifiers

• cooperative spam fighting systems

• design of more complex ranking functions

Additional application

!37

Autocomplete

When you start typing something,
you get 10 results.

Trie-based map from string to values.

Values are importance scores

Trie can be space efficient since they
share nodes, i.e. Radix tree

!38

Autocomplete

cod

2019 romemilanamsterda

2019 2019

ninjasmadrid

2018

berlin

ing e

motion

25
30 21 18 23 23 27

31

3640

33

19
2019

26
2018location

1822 14 24

slides
20

prefix = “Codemotio”

!39

Alerts

Register some search queries

Get a notification when new web pages
matching your query are published

Also referred as searching over streams
or reverse query

!40

Alerts
(

(

(

Query #1

Query #2

Query #3

Stream of documents

)))

……

1. Users’ queries are indexed
2. Documents are turned into a disjunctive query
3. Process which queries match the documents

*

*

*

Open source implementations:

• Luwak - https://github.com/flaxsearch/luwak
• Elastic search percolator - https://www.elastic.co/blog/percolator

!41

k-Nearest Neighbors

Image #1

Image #2

Image #4

Image #3

Query

+
+
+

k-Nearest Neighbors+

+Query

Image #1

Image #2

Image #3

Image #4

C
N
N

C
N
N

Nearest Neighbor libraries:

• Annoy - https://github.com/spotify/annoy
• Faiss - https://github.com/facebookresearch/faiss
• SPTAG - https://github.com/Microsoft/SPTAG
• FLANN - https://github.com/mariusmuja/flann

1. Images are mapped into an
embedding vector, to get a
representation of the input in a low-
dimensional latent space where
similar images are located nearby.

2. To find visually similar images for a
query image, we simply find its
neighbors.

3. Mapping images onto a meaningful
latent space is achieved with a deep
convolutional neural network

!42

Open Source Search Engines

• Apache Solr: open source enterprise search platform, written in Java, from the Apache Lucene project - http://lucene.apache.org/solr

• Elasticsearch: a distributed, multitenant-capable full-text search engine based on the Lucene library - https://www.elastic.co

• RediSearch: FullText Search and Secondary Index module for Redis - https://github.com/RedisLabsModules/RediSearch

• Vespa: an engine for low-latency computation over large data sets - https://vespa.ai/

• Riot: Go Open Source, Distributed, Simple and efficient full text search engine - https://github.com/go-ego/riot

• Belve: full-text search and indexing for Go - http://blevesearch.com/

• Tantivy: a full-text search engine library inspired by Apache Lucene and written in Rust - https://github.com/tantivy-search/tantivy

• Toshi: a full-text search engine in rust - https://github.com/toshi-search/Toshi

• Terrier: highly flexible, efficient, and effective open source search engine, readily deployable on large-scale collections of documents -
http://terrier.org/

• MG4J: highly customisable, high-performance, full-fledged search engine - http://mg4j.di.unimi.it/

http://lucene.apache.org/solr
https://www.elastic.co
https://github.com/RedisLabsModules/RediSearch
https://vespa.ai/
https://github.com/go-ego/riot
http://blevesearch.com/
https://github.com/tantivy-search/tantivy
https://github.com/toshi-search/Toshi
http://terrier.org/
http://mg4j.di.unimi.it/

!43

PISA: Performant Indexes and Search for Academia

https://github.com/pisa-engine/pisa/

https://github.com/pisa-engine/pisa/

!44

Standard Datasets

Common Crawl Corpus: petabytes of data collected since 2011
http://commoncrawl.org/

The ClueWeb09 Dataset: one billion web pages in ten languages that were collected in January and February 2009
https://lemurproject.org/clueweb09.php/

The ClueWeb12 Dataset: English web pages, collected between February 10, 2012 and May 10, 2012 -
https://lemurproject.org/clueweb12/

GOV2 Test Collection: a crawl of .gov sites (early 2004)
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

The New York Times Annotated Corpus
https://catalog.ldc.upenn.edu/LDC2008T19

Washington Post Corpus
https://trec.nist.gov/data/wapost/

TREC Collections
https://trec.nist.gov/data.html

http://commoncrawl.org/
https://lemurproject.org/clueweb09.php/
https://lemurproject.org/clueweb12/
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
https://catalog.ldc.upenn.edu/LDC2008T19
https://trec.nist.gov/data/wapost/
https://trec.nist.gov/data.html

!45

Recommended Books

Introduction to Information Retrieval, by C. Manning, P. Raghavan, H.
Schuetze. (Free online version of book)

Search Engines: Information Retrieval in Practice, by B. Croft, D. Metzler, and T.
Strohman. Addison-Wesley 2009.

Information Retrieval: Implementing and Evaluating Search Engines, by S.
Buettcher, C. Clarke, and G. Cormack. MIT Press, 2010.

Scalability Challenges in Web Search Engines, by B. Cambazoglu and R. Baeza-Yates,
Morgan&Claypool, 2015.

Managing Gigabytes : Compressing and Indexing Documents and Images, by I.
Witten, A. Moffat, and T. Bell. Morgan Kaufmann 1999.

(Any questions?

https://www.antoniomallia.it/talks.html

, Slides

https://www.antoniomallia.it/talks.html

