
Faster BlockMax WAND with Longer Skipping

Contribution

Antonio Mallia Elia Porciani
New York University Sease Ltd.

Longer skippinggithub.com/pisa-engine/pisa/tree/ecir19-ls

• We propose an optimization for the BlockMax WAND
(BMW) family of algorithms, which exploits
particular sequences of block max scores in order to
perform longer skipping.

• We embed an additional data structure that stores
precomputed skips in order to overcome the run time
search overhead introduced by compressing the block
boundaries.

Abstract Longer Skipping

Conclusions and Future Work

Experiments

Applied a longer skipping strategy to both BMW and
VBMW, which results in marked benefits of processing
time for short queries.

We intend to study how beneficial can be the
combination of our longer skipping strategy to threshold
estimation techniques.

BlockMax WAND and Variable BlockMax WAND represent the
most advanced query processing algorithms that make use of
dynamic pruning techniques, which allow them to retrieve the
top k most relevant documents for a given query without any
effectiveness degradation of its ranking.

In this paper, we describe a new technique for the BlockMax
WAND family of query processing algorithm, which improves block
skipping in order to increase its efficiency. We show that our
optimization is able to improve query processing speed on short
queries by up to 37% with negligible additional space overhead.

Datasets: we performed our experiments on standard datasets:
Gov2 and ClueWeb09 Category B.

Queries: to evaluate the speed of query processing we use the
TREC 2005 and TREC 2006 Terabyte Track Efficiency Task

Longer Skipping (LS) is a new strategy to advance the
term iterator farther than the current block boundaries,
identifying the next document ID to move to by
progressively skipping entire blocks until one with
greater block-max score is found.

Precomputed Longer Skipping (PLS) precomputes
the skip size at index build time, encodes it with a fixed
number of bits and stores it interleaved with the blocks
information.

Improvements for short queries (from 2 to 4 terms) with
negligible performance degradation for longer queries.

For the compressed version of the algorithms the run time
optimization does not lead to any improvements. The
precomputed version overcomes this issue and obtains almost
the same gain of the run time version for the uncompressed
BMW with a negligible overhead in index size.

Gov2 ClueWeb09

Documents 24,622,347 50,131,015
Terms 35,636,425 92,094,694
Postings 5,742,630,292 15,857,983,641

Gov2 ClueWeb09

2 3 4 5 6+ 2 3 4 5 6+

T
R
E
C
20
05

BMW 1.22 3.07 4.68 7.43 16.73 4.63 11.37 16.68 25.72 55.99
VBMW 0.99 1.91 2.69 4.21 9.18 3.17 6.39 8.92 14.46 32.04
BMW-LS 0.93 2.88 4.61 7.41 17.40 2.92 10.20 16.76 26.84 60.42
VBMW-LS 0.78 1.77 2.63 4.20 9.23 2.18 5.66 8.57 14.44 31.95

C-BMW 1.33 3.39 5.13 8.27 18.26 5.19 12.78 19.09 29.19 63.32
C-VBMW 1.10 2.08 2.93 4.60 10.16 3.53 6.97 9.86 16.06 36.26
C-BMW-LS 1.38 3.42 5.32 8.26 18.74 5.36 13.11 19.42 29.93 65.08
C-VBMW-LS 1.14 2.15 3.04 4.75 10.21 3.67 7.34 10.29 16.46 36.48
C-BMW-PLS 1.12 3.10 5.00 8.00 18.77 3.89 11.19 18.41 29.58 65.80
C-VBMW-PLS 0.94 1.95 2.93 4.71 10.17 2.68 6.30 9.52 16.07 36.01

T
R
E
C
20
06

BMW 1.11 3.58 6.24 10.03 23.85 3.46 11.33 19.82 32.37 74.13
VBMW 0.78 2.26 3.58 5.55 12.88 2.28 6.80 11.64 18.68 42.17
BMW-LS 0.85 3.22 6.08 9.98 24.86 2.50 10.42 19.77 33.28 80.62
VBMW-LS 0.58 2.05 3.46 5.49 12.92 1.66 6.25 11.35 18.59 42.04

C-BMW 1.22 3.90 6.95 11.09 26.34 3.80 12.48 22.27 35.83 82.96
C-VBMW 0.89 2.49 3.96 6.08 14.60 2.51 7.42 12.86 20.40 46.87
C-BMW-LS 1.28 4.02 7.19 11.17 27.07 3.96 12.91 22.85 37.02 85.59
C-VBMW-LS 0.91 2.57 4.06 6.23 14.88 2.61 7.68 13.21 20.99 47.48
C-BMW-PLS 1.02 3.57 6.56 10.75 26.52 3.09 11.57 21.92 36.52 85.45
C-VBMW-PLS 0.72 2.34 3.86 6.07 14.54 1.98 6.88 12.51 20.46 47.33

Algorithm 1 Find next doc ID

1: next docid ← MAX DOCID

2: for all t ∈ terms do
3: block ← t.block

4: s ← block.score

5: docid ← block.boundary

6: while block.score <= s do
7: docid ← block.boundary

8: block ← block.next

9: end while
10: if docid < next docid then
11: next docid ← docid

12: end if
13: end for

1

Acknowledgments. Antonio Mallia's research was partially
supported by NSF Grant IIS-1718680 "Index Sharding and
Query Routing in Distributed Search Engines”.

Baseline: BMW and VBMW with 40 elements per block in
average, in both their uncompressed and compressed form.

