
Faster BlockMax WAND with Longer Skipping

Antonio Mallia1 and Elia Porciani2

1 Computer Science and Engineering, New York University, New York, US
2 Sease Ltd., London, UK

Abstract. One of the major problems for modern search engines is to
keep up with the tremendous growth in the size of the web and the num-
ber of queries submitted by users. The amount of data being generated
today can only be processed and managed with specialized technologies.
BlockMax WAND and the more recent Variable BlockMax WAND rep-
resent the most advanced query processing algorithms that make use of
dynamic pruning techniques, which allow them to retrieve the top k most
relevant documents for a given query without any effectiveness degrada-
tion of its ranking. In this paper, we describe a new technique for the
BlockMax WAND family of query processing algorithm, which improves
block skipping in order to increase its efficiency. We show that our opti-
mization is able to improve query processing speed on short queries by
up to 37% with negligible additional space overhead.

Keywords: Top-k query processing · Inverted index · Early termination.

1 Introduction

In the past two decades, the amount of data being created has skyrocketed. The
key to unlock the full potential of these huge datasets is to make the most of
advances in algorithms and tools capable to handle it.

Many parts of the search engine architecture, including data acquisition,
data analysis, and index maintenance, are facing critical challenges. Nevertheless,
query processing is still the hardest to deal with, since workload grows with both
data size and query load. Although hardware is getting less expensive and more
powerful every day, the size of the data and the number of searches is growing
at an even faster rate. Much of the research and development in information
retrieval is, indeed, aimed at improving retrieval efficiency.

While, query processing in search engines is a fairly complex process, most
systems appear to process a query by first evaluating a fairly simple ranking
function over an inverted index. We focus on improving this initial step, which
is responsible for a significant fraction of the overall work.

Traversing the index structures of all the query terms and computing the
scores of all the postings is the way to evaluate exhaustively a user query. Unfor-
tunately, the cost of each query increases linearly with the number of documents,
making it very expensive for large collections. To overcome this problem, many
researchers have proposed so-called early-termination techniques, for finding the
top-k ranked results without computing or retrieving all posting scores.



2 Antonio Mallia, Elia Porciani

In this work, we focus on such techniques for improving query processing
efficiency without degrading effectiveness to rank K (known as safe-to-rank).

Our Contributions . We list here our main contributions.

1. We propose an optimization for the BlockMax WAND (BMW) family of al-
gorithms, which exploits particular sequences of block max scores in order
to perform longer skipping.

2. We embed an additional data structure that stores precomputed skips in
order to overcome the run time search overhead introduced by compressing
the block boundaries.

2 Background and Related Work

We first briefly explain the studied methods for both index compression and
query processing. We refer to the referenced papers for more details that are
omitted due to space restriction.

Index Organization. We consider a collection of documents indexed in an
inverted index [14]. Each term occurring in the collection contributes a list of
IDs of the documents containing it (usually along with respective document
frequencies or other data used to rank documents), called a posting list. As a
requirement for Document-at-a-Time (DAAT ) query processing, which scans
postings lists concurrently, the document IDs must be sorted in the ascending
order. This allows us to compress it efficiently making it possible to keep the
entire index in memory.

NextGEQt(d) is an operator which returns the smallest document ID in the
inverted list of term t that is greater than or equal to d. A fast implementation
of the function NextGEQt(d) is crucial for the efficiency of this process and it
is strictly dependent on the compression algorithm used. One widely adopted
solution to efficiently implement NextGEQt(d) operator is to divide each list into
blocks that are individually encoded with the chosen encoding method.

Block-based encoding is not optimal when skipping is performed among the
inverted lists, because it requires to decode an entire block to access a single
element. This reflects the access pattern of early termination algorithms such as
BMW, where entire segments of the posting lists are skipped. For this reason,
we have chosen to use Partitioned Elias-Fano [9] as compression technique, which
provides random access to compressed elements without decoding the whole
sequence. Partitioned Elias-Fano has been recently proposed as an improvement
of Elias-Fano, initially introduced by Vigna [12], in order to exploit the local
clustering that inverted lists usually exhibit, resulting in reduced space usage.

Query Processing. Several algorithms have been proposed to accomplish ex-
haustive evaluation over an inverted index to find top-k documents. Broder et al.
[1] introduced for the first time WAND, a solution which exploits an augmented
index with maximum scores for each term of the posting lists. The algorithm
maintains a top-k priority queue of the scores of the evaluated document, such



Faster BlockMax WAND with Longer Skipping 3

that a minimum threshold needs to be met by a document to enter the top-k.
The idea behind WAND is to access the posting lists with an iterator keeping
the postings ordered by ID. Each iteration of the algorithm sorts the terms by
the current ID of the associated iterator and adds up the maximum scores of the
terms until the threshold is reached. This allows to find the minimum document
ID which has to be evaluated, allowing us to safely ignore all the preceding ones.
BlockMax WAND [6] further improves WAND by better estimating the upper
bounds by splitting a posting list into fixed-sized blocks and storing the max-
imum score per block. Additionally, BlockMax WAND refines the score upper
bound of a candidate ID found by WAND by using these upper bounds. This
operation is fast, as it involves no block decompression. Whenever the maximum
score estimation would not be sufficient to enter the top-k, we can skip all docu-
ment IDs belonging to the intersection of the current blocks involved, translating
to a move to the minimum document of the current block boundaries.

Variable BlockMax WAND (VBMW) [8] generalizes BMW by allowing variable
lengths of blocks. More precisely, it uses a block partitioning such that the sum
of differences between maximum scores and individual scores is minimized. This
results in better upper bound estimation and more frequent document skipping
with the downside of a computational overhead at index building time in order
to compute the optimal block partitioning.

3 Our Contribution

The efficiency of early termination algorithms is closely related to the number of
documents skipped during index traversing. In the case of the BlockMax WAND
family, the greatest contribution to skipping happens after the block upper bound
is computed, specifically when the aggregated score does not reach the threshold
and a move to the next block boundary can be safely performed. Advancing
the term iterator to the following minimum block boundary is driven by the
intuition that no documents in the current blocks can exceed the upper bound
estimation. On the other hand, this choice is not guaranteed to be optimal.

We introduce a modification of the BMW algorithm which uses a new strat-
egy to advance the term iterator farther than the current block boundaries,
which results in longer but safe document skipping. The observation behind our
strategy is that when an iterator is updated, if the max score of the block after
the boundary does not increase, then we can state that the sum of the blocks
upper bound will still not be greater than the threshold. The next iteration
will then perform unnecessary computation until a new block skipping happens
again. Our solution consists of identifying the next document ID to move at,
by progressively skipping entire blocks until one with greater block max score is
found. Algorithm 1 depicts how the new document ID is chosen.

Our first contribution is to implement this ”longer skipping” strategy in
both BMW and VBMW algorithms, where we named our variations BMW-LS
and VBMW-LS respectively. To the best of our knowledge, there is no evidence
in literature of BMW additional data being compressed, in the way it is done for



4 Antonio Mallia, Elia Porciani

VBMW. Also, we experimented with both compressed version of the algorithms,
named here C-BMW and C-VBMW (refer to [8] for the details) for the ones
using the unmodified skipping strategy; C-BMW-LS and C-VBMW-LS for the
ones using the new skipping strategy.

Query time search for a longer skip, although reduces the fully evaluated
documents, is expensive from a computational point-of-view because of the com-
pressed blocks information. For this reason, we introduced an alternative ap-
proach of the proposed solution which precomputes the skip size at index build
time, storing the information interleaved with the blocks information. Consid-
ering that we need to store only one additional information – the distance in
number of blocks to the last one that we can skip – we have chosen to encode
it with a fixed number of bits. This represents a limitation for the maximum
number of subsequent blocks that can be skipped, but we have experimentally
observed that after a certain amount of bits per element there is no performance
advantage. In our implementation and for the examined datasets, we used 3
bits per element, so that up to 7 blocks skips can be encoded. We named this
implementation Precomputed Longer Skipping (PLS).

Algorithm 1 Find next doc ID

1: next docid←MAX DOCID
2: for all t ∈ terms do
3: block ← t.block
4: s← block.score
5: docid← block.boundary
6: while block.score <= s do
7: docid← block.boundary
8: block ← block.next
9: end while

10: if docid < next docid then
11: next docid← docid
12: end if
13: end for

Fig. 1. Example of Longer Skipping

Longer skipping

4 Experimental Results

Testing details All the algorithms are implemented in C++14 and compiled with
GCC 7.3.0 with the highest optimization settings. The tests are performed on a
machine with 8 Intel Core i7-4770 Haswell cores clocked at 3.40GHz with 32GiB
RAM running Linux 4.15.0. The indexes are saved to disk after construction and
memory-mapped to be queried so that there are no hidden space costs due to
loading of additional data structures in memory. Before timing the queries we
ensure that the required posting lists are fully loaded in memory. All timings
are measured taking the results with minimum value of five independent runs.
All times are reported in milliseconds.



Faster BlockMax WAND with Longer Skipping 5

The source code is available 3 for the reader interested in further implemen-
tation details or in replicating the experiments.

Datasets We performed our experiments on the following standard datasets.

– Gov2 is the TREC 2004 Terabyte Track test collection consisting of 25 million
.gov sites crawled in early 2004; the documents are truncated to 256 kB.

– ClueWeb09 [2] is the ClueWeb 2009 TREC Category B collection consisting
of 50 million English web pages crawled between January and February 2009.

For each document in the collection the body text was extracted using Apache
Tika4 and the words lowercased and stemmed using the Porter2 stemmer; no
stopwords were removed. The doc IDs were assigned according to the lexico-
graphic order of their URLs [11].

Gov2 ClueWeb09

Documents 24622347 50131015
Terms 35636425 92094694
Postings 5742630292 15857983641

Table 1. Statistics for the test collections Fig. 2. Query length distribution

Queries To evaluate the speed of query processing we use the TREC 2005 and
TREC 2006 Terabyte Track Efficiency Task, drawing only queries whose terms
are all in the collection dictionary. From those sets of queries, we randomly
select 1000 queries for each length. Figure 2 depicts the query distribution, which
clearly shows that short queries dominate.

We have used BMW and VBMW as baseline with 40 elements per block
in average, in both their uncompressed and compressed form. All the results,
including the query times in milliseconds for the baselines and our proposed
solutions, are presented in Table 2.

In our experiments, the proposed optimization improves short queries (from 2
to 4 terms) with negligible performance degradation for longer queries. This has
shown to be true for both Gov2 and ClueWeb09 datasets and without noticeable
differences for TREC 2005 and TREC 2006. Because of its pluggability, based on
the query length this optimization can be enabled at query time with the intent
of maximizing query performance. Although there is a noticeable improvement
for all short queries, the maximum speedup is observable using ClueWeb09 on
TREC 2005 queries where BMW-LS performs 37% faster than BMW and VBMW-
LS reduces by 31% the time spent to process the query. We have chosen to
show the results for BMW because it could be a better choice in the case where
block-based compression algorithms [13] are used and because it has a simpler
and faster offline build process where compared to VBMW; our optimization is
orthogonal to any further improvements built on top of BMW [7, 4, 3, 5, 10].

3 https://github.com/pisa-engine/pisa/tree/ecir19-ls
4 http://tika.apache.org



6 Antonio Mallia, Elia Porciani

Table 2. Query times (in ms) of different algorithms for several query lengths.

Gov2 ClueWeb09

2 3 4 5 6+ 2 3 4 5 6+

T
R
E
C

2
0
0
5

BMW 1.22 3.07 4.68 7.43 16.73 4.63 11.37 16.68 25.72 55.99
VBMW 0.99 1.91 2.69 4.21 9.18 3.17 6.39 8.92 14.46 32.04
BMW-LS 0.93 2.88 4.61 7.41 17.40 2.92 10.20 16.76 26.84 60.42
VBMW-LS 0.78 1.77 2.63 4.20 9.23 2.18 5.66 8.57 14.44 31.95

C-BMW 1.33 3.39 5.13 8.27 18.26 5.19 12.78 19.09 29.19 63.32
C-VBMW 1.10 2.08 2.93 4.60 10.16 3.53 6.97 9.86 16.06 36.26
C-BMW-LS 1.38 3.42 5.32 8.26 18.74 5.36 13.11 19.42 29.93 65.08
C-VBMW-LS 1.14 2.15 3.04 4.75 10.21 3.67 7.34 10.29 16.46 36.48
C-BMW-PLS 1.12 3.10 5.00 8.00 18.77 3.89 11.19 18.41 29.58 65.80
C-VBMW-PLS 0.94 1.95 2.93 4.71 10.17 2.68 6.30 9.52 16.07 36.01

T
R
E
C

2
0
0
6

BMW 1.11 3.58 6.24 10.03 23.85 3.46 11.33 19.82 32.37 74.13
VBMW 0.78 2.26 3.58 5.55 12.88 2.28 6.80 11.64 18.68 42.17
BMW-LS 0.85 3.22 6.08 9.98 24.86 2.50 10.42 19.77 33.28 80.62
VBMW-LS 0.58 2.05 3.46 5.49 12.92 1.66 6.25 11.35 18.59 42.04

C-BMW 1.22 3.90 6.95 11.09 26.34 3.80 12.48 22.27 35.83 82.96
C-VBMW 0.89 2.49 3.96 6.08 14.60 2.51 7.42 12.86 20.40 46.87
C-BMW-LS 1.28 4.02 7.19 11.17 27.07 3.96 12.91 22.85 37.02 85.59
C-VBMW-LS 0.91 2.57 4.06 6.23 14.88 2.61 7.68 13.21 20.99 47.48
C-BMW-PLS 1.02 3.57 6.56 10.75 26.52 3.09 11.57 21.92 36.52 85.45
C-VBMW-PLS 0.72 2.34 3.86 6.07 14.54 1.98 6.88 12.51 20.46 47.33

In contrast, it is interesting to notice that for the compressed version of the
algorithms the run time optimization does not lead to any improvements, but
actually results in a slower execution. The precomputed version of our opti-
mization overcomes this issue and obtains almost the same gain of the run time
version for the uncompressed BMW with a negligible overhead in index size (less
than 1% of the total index size). PLS optimization is omitted for the uncom-
pressed variants, considering that linear scan does not suffer the decompression
overhead.

5 Conclusions

In this paper, we demonstrated the applicability of a longer skipping strategy
to both BMW and VBMW, which results in marked benefits of processing time
for short queries. We proposed two different variations. The former evaluates
at query time the size of the possible skips and finds its best applicability with
uncompressed blocks score information, while the latter precomputes and stores
into the index this information which is ideal when blocks scores are compressed.
Our extensive experiment analysis shows that both strategies improve on their
direct competitors by up to 37%, with a negligible additional space usage in case
of precomputed skips.

Finally, in the future, we also want to study the combination of our algorithm
to existing and new threshold estimation techniques to study how those can be
beneficial when combined with our longer skipping strategy.

Acknowledgments. Antonio Mallia’s research was partially supported by NSF
Grant IIS-1718680 ”Index Sharding and Query Routing in Distributed Search
Engines”.



Faster BlockMax WAND with Longer Skipping 7

References

[1] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason
Zien. Efficient query evaluation using a two-level retrieval process. In Proc.
of the 12th Intl. Conf. on Information and Knowledge Management, pages
426–434, 2003.

[2] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09 data set, 2009. URL
http://lemurproject.org/clueweb09/.

[3] Caio Moura Daoud, Edleno Silva de Moura, André Luiz da Costa Carvalho,
Altigran Soares da Silva, David Fernandes de Oliveira, and Cristian Rossi.
Fast top-k preserving query processing using two-tier indexes. Inf. Process.
Manage., 52:855–872, 2016.

[4] Caio Moura Daoud, Edleno Silva de Moura, David Fernandes de Oliveira,
Altigran Soares da Silva, Cristian Rossi, and André Luiz da Costa Car-
valho. Waves: a fast multi-tier top-k query processing algorithm. Inf. Retr.
Journal, 20:292–316, 2017.

[5] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. Opti-
mizing top-k document retrieval strategies for block-max indexes. In Proc.
of the 6th ACM Intl. Conf. on Web Search and Data Mining, pages 113–122,
2013.

[6] Shuai Ding and Torsten Suel. Faster top-k document retrieval using block-
max indexes. In Proc. of the 34th Ann. Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 993–1002, 2011.

[7] Andrew Kane and Frank Wm. Tompa. Split-lists and initial thresholds for
wand-based search. In Proc. of the 41st Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages 877–880, 2018.

[8] Antonio Mallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and
Rossano Venturini. Faster blockmax WAND with variable-sized blocks. In
Proc. of the 40th Ann. Intl. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval, pages 625–634, 2017.

[9] Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano indexes.
In Proc. of the 37th Ann. Intl. ACM SIGIR Conf. on Research and Devel-
opment in Information Retrieval, pages 273–282, 2014.

[10] Oscar Rojas, Veronica Gil-Costa, and Mauricio Marin. Efficient parallel
block-max wand algorithm. In Proceedings of the 19th International Con-
ference on Parallel Processing, pages 394–405, 2013.

[11] Fabrizio Silvestri. Sorting out the document identifier assignment problem.
In Proceedings of the 29th European Conference on IR Research, pages 101–
112, 2007.

[12] Sebastiano Vigna. Quasi-succinct indices. In Proc. of the 6th ACM Intl.
Conf. on Web Search and Data Mining, pages 83–92, 2013.

[13] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and
query processing with optimized document ordering. In Proc. of the 18th
Intl. Conf. on World Wide Web, pages 401–410, 2009.

[14] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM
Comput. Surv., 38(2), 2006.


