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Abstract. In the last two decades, the IR community has seen numerous
advances in top-k query processing and inverted index compression tech-
niques. While newly proposed methods are typically compared against
several baselines, these evaluations are often very limited, and we feel
that there is no clear overall picture on the best choices of algorithms
and compression methods. In this paper, we attempt to address this issue
by evaluating a number of state-of-the-art index compression methods
and safe disjunctive DAAT query processing algorithms. Our goal is to
understand how much index compression performance impacts overall
query processing speed, how the choice of query processing algorithm
depends on the compression method used, and how performance is im-
pacted by document reordering techniques and the number of results
returned, keeping in mind that current search engines typically use sets
of hundreds or thousands of candidates for further reranking.
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1 Introduction

Over the past few decades, the IR community have been making a continu-
ous effort to improve the efficiency of search in large collections of documents.
Advances have been made in virtually all aspects of text retrieval, including in-
dex compression and top-k query processing. Although a multitude of authors
have reported experimental results, comparing them across different publications
poses a challenge due to varying data sets, parameters, evaluation metrics, and
experimental setups. We aim to address this issue by providing an extensive
experimental comparison across many index compression techniques and several
query processing algorithms. Our comparison includes many recent methods,
and thus provides a useful snapshot of the current state of the art in this area.

The most common structure used for text retrieval is an inverted index. For
each term in a parsed collection, it stores a list of numerical IDs of documents
containing this term, typically along with additional data, such as term frequen-
cies or precomputed quantized impact scores. We call all values associated with
a (term, document)-pair a posting. Postings are typically sorted in order of in-
creasing document IDs, although there are other index organizations. We assume
document-sorted posting lists throughout this paper.
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The first problem we encounter is efficient index representation. In partic-
ular, compression of posting lists is of utmost importance, since they account
for much of the data size and access costs. In practice, the problem we must
solve is efficient encoding of non-negative integers, such as document IDs or
their gaps, frequencies, positions, or quantized scores. Some encoding schemes,
such as Golomb [23] or Binary Interpolative [34], can be very space-efficient
but slow to decode. Other methods achieve very fast decoding while sacrificing
compression ratio. In recent years, a significant boost in encoding efficiency has
been achieved due to application of SIMD (Single Instruction, Multiple Data)
instructions available on many modern CPUs [26, 27, 36, 44].

Likewise, the choice of a retrieval algorithm is crucial to query efficiency.
Due to large sizes of most search collections, retrieving all potential matches is
infeasible and undesirable. In practice, only the top k highest ranked documents
are returned. Ranking methods can be grouped into fast and simple term-wise
scoring methods [39, 51], and more complex rankers such as the Sequential De-
pendence Model (SDM) [31] or learning to rank methods [28, 49]. For term-wise
techniques, the score of a document with respect to a query is simply the sum
of the partial scores, also called impact scores, of the document with respect to
each term. Complex rankers give up this term independence assumption. They
are more accurate, but also much more expensive, as they require the evaluation
of fairly complex ranking functions on up to hundreds of features that need to be
fetched or generated from index and document data. Thus, it would be infeasible
to evaluate such complex rankers on large numbers of documents.

To combine the speed of term-wise scoring with the accuracy of the complex
rankers, a cascade ranking architecture is commonly deployed: First, a fast ranker
is used to obtain kc > k candidate results for a query; then the kc candidates
are reranked by a slower complex ranker to retrieve the final top k documents.
In this paper, we address the first problem, also known as candidate genera-
tion, as reranking can be considered a separate, largely independent, problem.
In particular, we focus on the performance of different index compression and
query processing algorithms for candidate generation. We limit ourselves to safe
Document-At-A-Time (DAAT) algorithms for disjunctive top-k queries.

Following the RIGOR Generalizability property [3], we focus on assessing
how well technology performs in new contexts. There are four dimensions to
our comparison study: index compression method, query processing algorithm,
document ordering, and the number k of retrieved candidates. Published work
proposing new compression methods or query processing algorithms typically
only looks at a small slice of possible configurations, say, a new query processing
algorithm compared against others using only one or two compression methods
and document orderings, and only on a very limited range of k.

Catena et al. [8] showed the impact of compressing different types of posting
information on the space and time efficiency of a search engine. Although they
investigate several compression methods, their focus is mostly on different vari-
ations of the FOR family. They also limit their query processing comparison to
exhaustive DAAT retrieval strategy, while we consider dynamic pruning tech-
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niques. On the other hand, they study several aspects not considered here, such
as compression of different types of index data. Thus, we feel that our study an-
swers different research questions by exploring many combinations of techniques
that have never been reported. It can serve as a guide for choosing the best
combinations of techniques in a given setup.
Contributions. We make the following major contributions:
1. We provide experimental results for an extensive range of configurations. We

include almost all of the state-of-the-art compression techniques, the most
commonly used DAAT query processing approaches, and several document
reorderings over a wide range of k. To our knowledge, this is the most ex-
tensive recent experimental study of this space of design choices.

2. We combine already established open-source libraries and our own implemen-
tations to create a code base that provides means to reproduce the results,
and that can also serve as a starting point for future research. We release
this code for free and open use by the research community.

2 Outline of Our Methods

We now describe the various methods and settings we explore, organized accord-
ing to the four dimensions of our study: compression method, query processing
algorithm, document ordering, and number of candidates k. We decided not to
include impact score quantization, another possible dimension, in this paper.
Score quantization raises additional issues and trade-offs that we plan to study
in a future extension of this work.

2.1 Index Compression Methods

We include in our study a total of 11 index compression methods that we con-
sider to be a good representation of the current state of the art. For each method,
we integrated what we believe to be the fastest available open-source implemen-
tation. We now briefly outline these methods.
Variable Byte Encoding. These methods encode each integer as a sequence
of bytes. The simplest one is Varint (also known as Varbyte or VByte), which
uses 7 bits of each byte to encode the number (or a part of it), and 1 remaining
bit to state if the number continues in the next byte. Although compression of
Varint is worse than that of older bit-aligned algorithms such as Elias [21], Rice
[38], or Golomb [23] coding, it is much faster in memory-resident scenarios [40].

Varint basically stores a unary code for the size (number of bytes used) of
each integer, distributed over several bytes. To improve decoding speed, Dean
[14] proposed Group Varint, which groups the unary code bits together. One
byte is used to store 4 2-bit numbers defining the lengths (in bytes) of the next
4 integers. The following bytes encode these integers.

Recently, several SIMD-based implementations of variable-byte encodings
have been shown to be extremely efficient [14, 36, 44]. Stepanov et al. [44] ana-
lyzed a family of SIMD-based algorithms, including a SIMD version of Group
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Varint, and found the fastest to be VarintG8IU : Consecutive numbers are grouped
in 8-byte blocks, preceded by a 1-byte descriptor containing unary-encoded
lengths (in bytes) of the integers in the block. If the next integer cannot fit
in a block, the remaining bytes are unused.

Stream VByte [27] combines the benefits of VarintG8IU and Group Varint.
Like Group Varint, it stores four integers per block with a 1-byte descriptor.
Thus, blocks have variable lengths, which for Group Varint means that the loca-
tions of these descriptors cannot be easily predicted by the CPU. Stream VByte
avoids this issue by storing all descriptors sequentially in a different location.

PForDelta. PForDelta [54] encodes a large number of integers (say, 64 or 128) at
a time by choosing a k such that most (say, 90%) of the integers can be encoded
in k bits. The remaining values, called exceptions, are encoded separately using
another method. More precisely, we select b and k such that most values are in
the range [b, b + 2k − 1], and thus can be encoded in k bits by shifting them
to the range [0, 2k − 1]. Several methods have been proposed for encoding the
exceptions and their locations. One variant, OptPForDelta [50], selects b and k
to optimize for space or decoding cost, with most implementations focusing on
space. A fast SIMD implementation was proposed in [26].

Elias-Fano. Given a monotonically increasing integer sequence S of size n, such
that Sn−1 < u, we can encode it in binary using dlog ue bits. Instead of writing
them directly, Elias-Fano coding [20, 22] splits each number into two parts, a
low part consisting of l = dlog u

ne right-most bits, and a high part consisting of
the remaining dlog ue − l left-most bits. The low parts are explicitly written in
binary for all numbers, in a single stream of bits. The high parts are compressed
by writing, in negative-unary form (i.e., with the roles of 0 and 1 reversed),
the gaps between the high parts of consecutive numbers. Sequential decoding is
done by simultaneously retrieving low and high parts, and concatenating them.
Random access requires finding the locations of the i-th 0- or 1-bit within the
unary part of the data using an auxiliary succinct data structure. Furthermore,
a NextGEQ(x) operation, which returns the smallest element that is greater than
or equal to x, can be implemented efficiently. Observe that hx, the higher bits
of x, is used to find the number of elements having higher bits smaller than hx,
denoted as p. Then, a linear scan of lx, the lower bits of x, can be employed
starting from posting p of the lower bits array of the encoded list.

The above version of Elias-Fano coding cannot exploit clustered data distri-
butions for better compression. This is achieved by a modification called Parti-
tioned Elias-Fano [35] that splits the sequence into b blocks, and then uses an
optimal choice of the number of bits in the high and low parts for each block.
We use this version, which appears to outperform Elias-Fano in most situations.

Binary Interpolative. Similar to Elias-Fano, Binary Interpolative Coding (BIC)
[34] directly encodes a monotonically increasing sequence rather than a sequence
of gaps. At each step of this recursive algorithm, the middle element m is en-
coded by a number m− l− p, where l is the lowest value and p is the position of
m in the currently encoded sequence. Then we recursively encode the values to
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the left and right of m. BIC encodings are very space-efficient, particularly on
clustered data; however, decoding is relatively slow.
Word-Aligned Methods. Several algorithms including Simple-9 [1], Simple-
16 [52], and Simple-8b [2] try to pack as many numbers as possible into one
machine word to achieve fast decoding. For instance, Simple-9 divides each 32-
bit word into a 4-bit selector and a 28-bit payload. The selector stores one of
9 possible values, indicating how the payload is partitioned into equal-sized bit
fields (e.g., 7 4-bit values, or 9 3-bit values). Some of the partitionings leave up
to three of the 28 payload bits unused. Later enhancements in [2, 52] optimize
the usage of these wasted bits or increase the word size to 64 bits.

Lemire and Boytsov [26] proposed a bit-packing method that uses SIMD
instructions. The algorithm, called SIMD-BP128, packs 128 consecutive integers
into as few 128-bit words as possible. The 16-byte selectors are stored in groups
of 16 to fully utilize 128-bit SIMD reads and writes.

Very recently, Trotman [46] proposed QMX encoding (for Quantities, Multi-
pliers, and eXtractor), later extended by Trotman and Lin [47]. It combines the
Simple family and SIMD-BP128 by packing as many integers as possible into
one or two 128-bit words. Furthermore, the descriptors are run-length encoded,
allowing one selector to describe up to 16 consecutive numbers.
Asymmetric Numeral Systems. Asymmetric Numeral Systems (ANS) [19]
are a recent advance in entropy coding that combines the good compression
rate of arithmetic coding with a speed comparable to Huffman coding. ANS
represents a sequence of symbols as a positive integer x, and depends on the
frequencies of symbols from a given alphabet Σ. Each string over Σ is assigned
a state, which is an integer value, with 0 for the empty string. The state of a string
wa is computed recursively using the state of w and the frequency of symbol a.
A more detailed description of ANS is beyond the scope of this paper, and we
refer to [19, 33]. Very recently, ANS was successfully used, in combination with
integer encodings such as VByte and the Simple family, to encode documents
and frequencies in inverted indexes [32, 33].

2.2 Query Processing

Next, we describe the top-k disjunctive DAAT query processing algorithms that
we study. We limit ourselves to safe methods, guaranteed to return the correct
top-k, and select methods that have been extensively studied in recent years.
MaxScore. MaxScore is a family of algorithms first proposed by Turtle and
Flood [48], which rely on the maximum impact scores of each term t (denoted
as maxt). Given a list of query terms q = {t1, t2, . . . , tm} such that maxti ≥
maxti+1 , at any point of the algorithm, query terms (and associated posting
lists) are partitioned into essential q+ = {t1, t2, . . . , tp} and nonessential q− =
{tp+1, tp+2, . . . , tm}. This partition depends on the current threshold T for a
document to enter the top k results, and is defined by the smallest p such that∑

t∈q− maxt < T . Thus, no document containing only nonessential terms can
make it into the top-k results. We can now perform disjunctive processing over
only the essential terms, with lookups into the nonessential lists. More precisely,
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for a document found in the essential lists, we can compute a score upper bound
by adding its current score (from the essential lists and any non-essential lists
already accessed) and the maxt of those lists not yet accessed; if this bound is
lower than T , then no further lookups on this document are needed. There are
TAAT and DAAT versions of MaxScore; we only consider the DAAT variant. In
this case, we attempt to update p whenever T changes.

WAND. Similar to MaxScore, WAND [6] (Weighted or Weak AND) also uti-
lizes the maxt values. During DAAT traversal, query terms and their associated
posting lists are kept sorted by their current document IDs. We denote this list of
sorted terms at step s of the algorithm as qs = 〈t1, t2, . . . , tm〉. At each step, we
first find the pivot term tp, where p is the lowest value such that

∑p
i=1 maxti ≥ T .

Let dp be the current document of tp. If all ti with i < p point to dp, then the
document is scored and accumulated, and all pointers to dp are moved to the
next document. Otherwise, no document d < dp can make it into the top-k; thus,
all posting lists up to tp are advanced to the next document ≥ dp, and we resort
and again find the pivot. This is repeated until all documents are processed.

Block-Max WAND. One shortcoming of WAND is that it uses maximum im-
pact scores over the entire lists. Thus, if maxt is much larger than the other
scores in the list, then the impact score upper bound will usually be a signifi-
cant overestimate. Block-Max WAND (BMW) [18] addresses this by introducing
block-wise maximum impact scores.

First, regular WAND pivot selection is used to determine a pivot candidate.
The candidate is then verified by shallow pointer movements: The idea is to
search for the block in a posting list where the pivot might exist. This opera-
tion is fast, as it involves no block decompression. Shallow pointer movement
is performed on each ti<p, and the block-wise maximum score is computed. If
it is greater than T , then tp is the pivot. In this case, if all ti≤p point at dp,
we perform the required lookups, following by advancing the pointers by one;
otherwise, we pick the ti<p with the largest IDF, and advance its pointer to a
document ID ≥ dp + 1. If the block-size maximum score is less than T , we must
find another candidate. We consider the documents that are at the current block
boundaries for ti≤p, and all the current documents for ti>p. We select the mini-
mum document ID among them and denote it as d′. Finally, we select the ti<p

with the largest IDF, and move its pointer to d′. We repeat the entire process
until all terms are processed.

Variable Block-Max WAND. [30] generalizes BMW by allowing variable
lengths of blocks. More precisely, it uses a block partitioning such that the sum
of differences between maximum scores and individual scores is minimized. This
results in better upper bound estimation and more frequent document skipping.

Block-Max MaxScore. The idea of using per-block maximum impact scores
can also be applied to MaxScore, leading to the Block-Max MaxScore [9] (BMM)
algorithm. Before performing look-ups to nonessential lists, we further refine
our maximum score estimate using maximum impacts of the current blocks in
nonessential lists, which might lead to fewer fully evaluated documents.
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2.3 Document Ordering

It is well known that a good assignment of IDs to documents can significantly
improve index compression. Many query processing algorithms are also sensitive
to this assignment, with speed-ups of 2 to 3 over random assignment observed
for some orderings and algorithms.

The problem of finding a document ordering that minimizes compressed index
size has been extensively studied [4, 5, 15, 17, 41–43]. Shieh et al. [41] propose
an approach based on an approximate maximum travelling salesman problem;
they build a similarity graph where documents are vertices, and edges indicate
common terms. Blandford and Blelloch [5] use a similarity graph with edges
weighted with cosine similarity, and run a recursive partitioning to find the
ordering. A considerable downside of such algorithms are their time and space
complexity. Silvestri [42] shows that a simple URL-based ordering works as well
as more complex methods on many data sets. The simplicity and efficiency of
this approach makes it a very attractive choice in practice. Recently, Dhulipala
et al. [15] proposed the Recursive Graph Bisection algorithm for graph and
index compression, and experiments show their algorithm to exhibit the best
compression ratio across all tested indices. We consider three orderings in our
study, random assignment, URL-based, and Recursive Graph Bisection.

While most work on document ID assignment focuses on index compression,
reordering also impacts query efficiency. Yan et al. [50] found that document re-
ordering can significantly speed up conjunctive queries. Subsequent experiments
show similar results for several disjunctive top-k algorithms, and in particular
for all the algorithms introduced in the previous subsection [18, 45, 24, 25, 16,
30]. Thus, query processing speeds depend on both compression method and
document ordering, though the trade-offs as not yet well understood.

2.4 Choice of k

The final dimension of our study is the choice of the number of results k. Much
previous work has focused on smaller values of k, such as 10 or 100. However,
when query processing algorithms are used for subsequent reranking by a com-
plex ranker, more results are needed, though the optimal value of k varies ac-
cording to several factors [29]. Suggested values include 20 [10], 200 [53], 1000
[37], 5000 [13], and up to tens of thousands [11], suggesting that the optimal k
is context-dependent. Also, recent work in [12] indicates that many top-k algo-
rithms slow down significantly as k becomes larger, but not always at the same
rate. Given this situation, we decided to perform our evaluation over a large
range of values, from k = 10 up to 10000.

3 Experimental Evaluation

Testing Environment. All methods are implemented in C++17 and compiled
with GCC 7.3.0 using the highest optimization settings. The tests are performed
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Documents Terms Postings

Gov2 24,622,347 35,636,425 5,742,630,292
ClueWeb09 50,131,015 92,094,694 15,857,983,641

Table 1. Basic statistics for the test collections

on a machine with an Intel Core i7-4770 quad-core 3.40GHz CPU, with 32GiB
RAM, running Linux 4.15.0. The CPU is based on the Haswell micro architecture
which supports the AVX2 instruction set. The CPUs L1, L2, and L3 cache sizes
are 32KB, 256KB, and 8MB, respectively. Indexes are saved to disk after con-
struction, and memory-mapped to be queried, so that there are no hidden space
costs due to loading of additional data structures in memory. Before timing the
queries, we ensure that any required lists are fully loaded in memory. All timings
are measured taking the results with minimum value of five independent runs,
and reported in milliseconds. We compute BM25 [39] scores during retrieval.
Data Sets. We performed experiments on two standard datasets: Gov2 and
ClueWeb09 [7], summarized in Table 1. For each document in the collection the
body text was extracted using Apache Tika, the words lowercased and stemmed
using the Porter2 stemmer; no stopwords were removed.
Document Ordering. We experimented with three document orderings: Ran-
dom, URL, and BP. The first, with IDs randomly assigned to documents, serves
as the baseline. URL assigns IDs in lexicographic order of URLs [42]. BP is based
on the Recursive Graph Bisection algorithm [15].
Implementation Details. Our codebase is a fork of the ds2i1 library, extended
with many additional encoding, query processing, and reordering implementa-
tions used in this study. The source code is available at https://github.com/

pisa-engine/pisa for readers interested in further implementation details or
in replicating the experiments. We integrated what we believe are the currently
best open-source implementations of the various compression algorithms. We use
the FastPFor2 library for implementation of VarintGB, VarintG8IU, OptPFD,
Simple16, Simple8b, SIMD-BP128, and StreamVByte. PEF and Interpolative
are based on the code of the ds2i library. The QMX implementation comes from
JASSv23. We used the reference implementation of ANS4 with 2d max:med con-
texts mechanism. All block-wise encodings use blocks of 128 postings per block.

We implemented the original Recursive Graph Bisection algorithm by Dhuli-
pala et al. [15] and validated the results obtained against those reported in their
paper. Our implementations of BMW and BMM store maximum impact scores
for blocks of size 128, while VBMW uses blocks of average length 40. Both these
values were also used in previous work.
Queries. To evaluate query processing speed, we use TREC 2005 and TREC
2006 Terabyte Track Efficiency Task, drawing only queries whose terms are all
in the collection dictionary. This leaves us with 90% and 96% of the total TREC

1 https://github.com/ot/ds2i
2 https://github.com/lemire/FastPFor
3 https://github.com/andrewtrotman/JASSv2
4 https://github.com/mpetri/partitioned_ef_ans
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Fig. 1. Query length distributions.

Table 2. Overall space in GB, and average bits per document ID and frequency.

Random URL BP

Gov2 ClueWeb09 Gov2 ClueWeb09 Gov2 ClueWeb09

space
GB

doc
bpi

freq
bpi

space
GB

doc
bpi

freq
bpi

space
GB

doc
bpi

freq
bpi

space
GB

doc
bpi

freq
bpi

space
GB

doc
bpi

freq
bpi

space
GB

doc
bpi

freq
bpi

Packed+ANS2 7.36 7.71 2.54 19.40 7.65 2.14 4.17 3.96 1.85 14.47 5.36 1.94 3.57 3.25 1.72 13.21 4.80 1.87
Interpolative 7.32 7.58 2.62 19.12 7.52 2.12 4.26 3.80 2.14 13.90 5.15 1.87 3.71 3.11 2.06 12.81 4.65 1.81
PEF 7.65 7.60 3.05 19.68 7.53 2.39 4.65 4.11 2.37 15.95 5.85 2.20 3.97 3.30 2.23 14.66 5.29 2.11
OptPFD 8.09 8.13 3.14 21.47 8.07 2.76 4.92 4.48 2.38 17.04 6.18 2.41 4.28 3.74 2.23 15.57 5.56 2.30
Simple16 9.53 9.43 3.85 25.30 9.40 3.35 5.96 5.34 2.90 19.36 6.92 2.79 5.28 4.62 2.73 17.82 6.34 2.65
Simple8b 9.96 9.24 4.63 26.41 9.18 4.14 6.32 5.53 3.27 21.46 7.36 3.47 5.60 4.77 3.03 20.09 6.87 3.27
QMX 10.21 9.16 5.07 27.10 9.14 4.53 6.71 5.98 3.36 23.27 7.98 3.75 5.92 5.19 3.06 21.64 7.43 3.49
SIMD-BP128 10.35 8.82 5.60 27.05 8.76 4.89 7.00 6.35 3.41 25.08 8.68 3.97 6.03 5.42 2.98 23.02 8.00 3.61
Varint-G8IU 14.51 11.38 8.83 40.51 11.60 8.84 13.75 10.35 8.81 38.82 10.75 8.83 13.57 10.09 8.81 38.35 10.51 8.83
VarintGB 15.64 12.01 9.77 43.58 12.18 9.81 15.02 11.15 9.77 42.10 11.43 9.80 14.87 10.94 9.77 41.77 11.27 9.80
StreamVByte 16.03 12.30 10.04 44.55 12.44 10.03 15.37 11.37 10.04 42.97 11.65 10.03 15.25 11.21 10.04 42.66 11.49 10.03

2005 and TREC 2006 queries for Gov2, and 96% and 98% of the total TREC 2005
and TREC 2006 queries for ClueWeb09. From each sets of queries, we randomly
selected 1 000 queries for each query length from 2 to 6+. Figure 1 shows the
query length distributions. For Figures 2 and 3, for each data point we sample
500 queries from each query set. We call this set Trec05-06.

4 Results and Discussion

Compressed Index Size. All compression results are summarized in Table 2,
sorted by increasing space for the Gov2 collection under the URL ordering. We
find that this order is mostly preserved across all tested scenarios. The exceptions
are Packed+ANS2 and Interpolative, which compete for the top spot. However,
relative differences change quite significantly. For instance, variable byte meth-
ods benefit little from URL or BP reordering. This is expected, since virtually
all gain comes from decreased document gaps, and no improvement is seen for
frequency encodings. On the other hand, packing methods are highly sensitive
to ordering, and achieve significantly better compression with URL or BP. For
instance, when using Packed+ANS2, the sizes of Gov2 and ClueWeb09 with URL
ordering decrease by 43% and 27%, respectively, compared to Random. Further
improvements are seen for BP.
Query Efficiency. We first executed the five early termination algorithms in
all configurations with k = 10. The results are shown in Table 3. As expected,
for a fixed ordering there is a clear trade-off between index size and query speed.
Variable byte encoding is extremely fast, but also gains the least from reorder-
ing. Interestingly, SIMD-BP128 basically matches the performance of Varint-G8IU
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Table 3. Query times (in ms) of different query processing strategies on indexes en-
coded using different encoding techniques.

Gov2 ClueWeb09

MaxScore WAND BMM BMW VBMW MaxScore WAND BMM BMW VBMW

R
A
N
D
O
M

T
R
E
C
0
5

Packed+ANS2 13.91 41.60 14.36 22.23 13.73 36.10 117.16 36.34 64.57 46.98
Interpolative 16.53 55.80 16.93 30.71 18.65 43.32 160.25 43.12 87.72 63.13
PEF 11.77 16.65 12.55 10.14 6.23 29.62 47.98 31.82 33.06 23.99
OptPFD 7.43 15.99 8.59 10.91 7.22 19.74 47.28 22.50 34.63 26.61
Simple16 8.33 19.39 9.38 12.83 8.15 22.28 57.02 24.54 39.10 29.72
Simple8b 7.05 16.08 8.51 10.98 7.29 18.67 47.54 22.36 34.15 26.17
QMX 7.50 15.77 8.72 11.50 7.28 20.11 47.77 22.73 35.25 26.47
SIMD-BP128 6.27 10.68 7.62 8.81 5.75 16.76 32.17 19.79 28.48 21.63
Varint-G8IU 5.86 10.95 7.43 8.69 5.75 15.46 33.03 19.56 27.74 21.71
VarintGB 5.96 11.33 7.52 9.00 5.90 15.75 34.26 19.79 28.61 21.86
StreamVByte 6.44 11.36 7.74 9.23 6.09 17.15 34.32 20.48 29.53 22.70

T
R
E
C
0
6

Packed+ANS2 25.81 95.41 26.14 60.93 41.18 55.19 196.34 68.78 137.39 96.30
Interpolative 30.84 127.23 30.90 83.35 55.84 67.06 270.54 66.90 185.83 129.58
PEF 19.08 32.49 20.51 30.56 20.38 41.13 67.24 44.89 71.40 49.53
OptPFD 12.93 34.24 15.21 32.73 23.04 28.84 73.09 33.78 75.62 55.61
Simple16 14.72 42.59 16.74 37.72 25.85 32.76 91.10 37.10 84.75 61.31
Simple8b 12.48 34.86 15.32 32.31 22.83 27.73 74.67 34.20 73.75 55.21
QMX 13.06 34.17 15.39 33.68 23.10 29.09 73.99 34.49 78.40 55.94
SIMD-BP128 10.56 21.80 13.20 27.04 18.88 23.95 48.20 29.73 63.25 45.76
Varint-G8IU 9.96 22.51 13.14 26.32 18.66 22.44 49.62 29.44 61.44 45.46
VarintGB 10.19 23.36 13.27 26.96 18.92 23.02 51.33 29.78 63.00 45.96
StreamVByte 10.83 23.40 13.37 27.96 19.69 24.70 51.64 30.32 65.60 48.22

U
R
L

T
R
E
C
0
5

Packed+ANS2 9.00 19.91 9.53 9.06 5.14 29.54 79.06 29.42 33.82 20.44
Interpolative 9.89 23.44 10.31 10.63 5.73 31.14 96.21 31.13 38.75 22.55
PEF 8.62 9.45 8.90 3.78 2.21 25.76 31.62 26.57 14.19 8.93
OptPFD 5.08 8.29 5.99 4.22 2.53 16.54 31.15 18.78 16.33 10.45
Simple16 5.60 9.27 6.31 4.62 2.70 17.32 35.21 19.43 17.26 11.01
Simple8b 4.60 7.87 5.64 4.01 2.46 14.97 29.64 17.79 15.41 9.94
QMX 5.16 8.07 6.05 4.23 2.40 16.15 30.42 18.40 15.63 9.82
SIMD-BP128 4.27 5.68 5.29 3.12 1.91 13.50 19.72 16.01 11.97 7.76
Varint-G8IU 3.96 5.72 5.02 3.07 1.96 12.47 20.00 15.76 11.88 7.90
VarintGB 4.02 5.89 5.10 3.17 1.94 12.85 20.87 16.09 12.23 8.00
StreamVByte 4.48 5.96 5.31 3.22 1.99 13.71 20.89 16.31 12.52 8.11

T
R
E
C
0
6

Packed+ANS2 14.83 39.05 15.46 20.64 11.14 46.20 128.12 45.27 73.88 40.96
Interpolative 16.23 45.66 16.65 24.26 12.51 49.40 158.23 48.14 84.89 45.85
PEF 14.32 15.52 14.41 9.71 5.38 39.41 45.35 39.19 33.11 18.43
OptPFD 8.22 14.12 9.85 10.49 5.95 24.98 47.76 29.42 37.37 21.61
Simple16 8.81 16.67 10.68 11.18 6.36 26.34 55.21 29.64 39.73 22.42
Simple8b 7.48 13.78 9.42 10.09 5.80 22.70 45.66 27.51 35.75 20.89
QMX 8.40 13.88 9.90 10.67 5.69 24.28 45.80 28.03 36.88 20.56
SIMD-BP128 6.80 8.98 8.64 8.27 4.63 19.96 29.18 24.49 28.56 16.50
Varint-G8IU 6.31 9.12 8.45 8.02 4.70 18.67 29.81 24.37 28.10 16.62
VarintGB 6.48 9.57 8.54 8.20 4.75 19.14 31.05 24.54 28.84 16.94
StreamVByte 6.95 9.51 8.74 8.50 4.86 20.29 31.22 24.90 29.79 17.42

B
P

T
R
E
C
0
5

Packed+ANS2 8.53 14.91 9.15 6.86 4.85 27.52 59.41 27.98 25.23 17.53
Interpolative 9.67 18.87 10.18 8.52 5.67 30.14 77.01 30.43 29.96 19.92
PEF 8.69 8.28 8.81 2.99 2.25 24.92 26.88 25.86 10.98 7.80
OptPFD 4.97 6.97 5.94 3.43 2.61 15.57 25.47 17.92 12.57 9.15
Simple16 5.38 7.83 6.23 3.69 2.77 16.57 29.33 18.72 13.44 9.71
Simple8b 4.45 6.69 5.57 3.24 2.50 14.08 24.25 17.02 11.93 8.74
QMX 5.01 7.04 6.03 3.45 2.51 15.19 25.38 17.79 11.97 8.56
SIMD-BP128 4.19 5.21 5.24 2.55 2.00 12.75 17.19 15.43 9.34 6.97
Varint-G8IU 3.86 5.22 5.02 2.54 2.03 11.87 17.71 14.95 9.24 6.98
VarintGB 3.93 5.34 5.10 2.63 2.05 12.08 18.37 15.32 9.55 7.06
StreamVByte 4.26 5.45 5.29 2.65 2.10 12.97 18.12 15.74 9.75 7.20

T
R
E
C
0
6

Packed+ANS2 14.61 26.66 15.67 15.64 10.36 41.24 85.86 41.53 50.79 32.81
Interpolative 16.50 34.54 17.49 19.30 12.29 45.86 113.44 44.90 60.75 38.32
PEF 14.88 12.44 15.18 7.65 5.44 37.60 34.73 36.46 24.24 16.21
OptPFD 8.31 11.15 10.26 8.61 6.03 22.62 35.20 26.18 26.95 18.40
Simple16 8.93 12.87 10.74 9.23 6.38 24.03 40.47 27.37 28.93 19.62
Simple8b 7.52 10.77 9.78 8.20 5.82 20.65 33.79 25.28 25.94 18.11
QMX 8.37 11.28 10.32 8.52 5.78 21.82 34.30 25.94 26.66 17.61
SIMD-BP128 6.97 7.73 9.06 6.80 4.74 18.09 23.00 23.41 21.21 14.47
Varint-G8IU 6.39 7.83 8.89 6.68 4.80 16.96 23.56 22.36 20.75 14.64
VarintGB 6.56 8.15 9.18 6.83 4.79 17.44 24.44 22.54 21.39 14.67
StreamVByte 7.04 8.25 9.15 7.07 4.96 18.53 24.59 23.24 21.97 15.22
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Fig. 2. Query times for different query lengths under URL ordering.

and VarintGB while achieving significantly better compression. Other packing
methods—QMX, Simple8b, and Simple16—along with OptPFD, fall slightly yet
noticeably behind. PEF is on average less efficient. However, it almost matches
the performance of the top four encodings for algorithms utilizing many skips
or lookups: BMW and especially VBMW. This is significant, as PEF decreases
the index size by more than 50% over the variable byte techniques. Finally, the
entropy-based encodings perform the worst across all settings, with Interpolative
being by far the slowest. Based on these results, we select a set of four encoding
techniques for further analysis: OptPFD, PEF, SIMD-BP128, and Varint-G8IU,
each representing a different group of fast algorithms.

Overall, the fastest retrieval algorithm is VBMW. Moreover, it facilitates
efficient query processing on a space-efficient PEF-encoded index. Unsurprisingly,
it improves upon BMW, which in turn improves upon WAND. These two also fall
short of MaxScore, which is the fastest when testing Random ordering but does
not benefit as much from reordering. We find BMM to provide no improvement
over MaxScore. Given these facts, and due to space constraints, we focus further
experiments on the MaxScore and VBMW algorithms.

We also notice a significant difference between different document orderings.
Queries on randomly ordered indexes can be almost 3 times slower than on URL
ordered ones. Quite interesting, although limited, is the improvement obtained
by BP over URL ordering. Even though there is some variability of the gain for
Gov2, which depends on the algorithm and encoding used, it is quite evident and
constant for ClueWeb09. To the best of our knowledge, this result for BP has not
been discussed in the literature, and it would be interesting to further investigate
the reasons for the improvement, with the aim of further improvements.

Query Length. Figure 2 shows average query times for different query term
counts using Trec05-06 queries, under the URL ordering. Interestingly, MaxS-
core performs better for long queries (except when PEF encoding is used). For
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Fig. 3. Query times for different k under URL ordering.

ClueWeb09 the difference is significant: about 10 ms. This could justify a hybrid
retrieval method that switches between algorithms based on a query length.
Varying k. The results for a range of values of k (using URL ordering) are shown
in Figure 3 on a log-log scale for better readability. First, we notice a significant
time increase with larger k across all encoding techniques. We find this increase
to be faster for VBMW. Both algorithms are roughly equally fast for k = 100
using Varint-G8IU or SIMD-BP128, while for larger k MaxScore becomes faster.
We note that at k = 10, 000 even the performance of PEF, which previously
performed well only for VBMW, is similar for both algorithms. This suggests
that MaxScore might be better suited for some cases of candidate generation.

5 Conclusions

In this paper, we performed an experimental evaluation of a whole range of
previously proposed schemes for index compression, query processing, index re-
ordering, and the number of results k. Our experiments reproduce many previous
results while filling some remaining gaps and painting a more detailed picture.
We confirm known correlation between index size and query speed, and provide
comprehensive data that may help to find the right trade-off for a specific appli-
cation. In particular, we find SIMD-BP128 to perform on a par with the variable
byte techniques while providing a significantly higher compression ratio. More-
over, PEF is both space and time-efficient when using the VBMW algorithm.
VBMW is the fastest query processing method for small k while MaxScore sur-
passes it for k > 100. Query cost increases significantly with k for DAAT meth-
ods, justifying TAAT and SAAT approaches for candidate generation such as
[12]. The good performance of MaxScore on long queries motivates hybrid meth-
ods that select algorithms based on query length.
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