
Neural Retrieval Meets
Cascading Architectures

April 10th 2025

Antonio Mallia, Staff Research Scientist
Cesare Campagnano, Senior Research Scientist
Jack Pertschuk, Principal Engineer

About us

I am currently a Staff Research Scientist at Pinecone.
Prior to this, I served as an Applied Scientist on the Artificial General Intelligence AGI
team at Amazon.
I hold a Ph.D. from New York University, where my research focused on efficient web
retrieval methodologies.

Antonio Mallia

Cesare Campagnano

I am currently a Senior Research Scientist at Pinecone.
I earned my Ph.D. from Sapienza University of Rome, under Gabriele Tolomei and Fabrizio
Silvestri, during which I also interned at Amazon.
Afterward, I held a PostDoc position at the same institution. My research interests revolve
around Large Language Models and Information Retrieval.

Special Guest!

Jack is a founding engineer and manager of the Applied Research and Algorithms team at
Pinecone. Prior to Pinecone, Jack was a founder of SidekickQA and creator of the NBoost
open source neural ranking engine.
He is an active member of the NYC Rust community and is passionate about solving
problems at the intersection of ML and databases.

Jack Pertschuk

About Pinecone

● Started as a vector database in 2019

● Founded by Edo Liberty

● Today, Pineconeʼs mission is to make AI knowledgeable

● The product offering has recently expanded to include new IR features

● Go and check it out: https://www.pinecone.io/

© 2024 Pinecone – All rights reserved

Agenda

Search & RAG

Cascading retrieval

Sparse & dense

Multi-vector

Cascading Reranking

Demo

“Knowledgeable AI requires better retrieval, not just better LLMsˮ

Modern Search

Retrieval-Augmented Generation RAG

Generation

Augment

Retrieval

RAG

Cascading retrieval

Cascading Retrieval: combining sparse, dense, & rerank

Sparse

Dense

Rank Fusion Multivector Reranking

1st stage 2nd stage 3rd stage

LLM

10M100M

1000

10
00

1000 100 10

Using two indexes rather than a hybrid index increases recall while the reranker
ensures accuracy of the final results.

Sparse & Dense

Search in a Nutshell

Vocabulary Mismatch

Dense Retrieval

k-Nearest Neighbour (kNN)

Sparse timeline

Learned Sparse Retrieval

Benchmarking pinecone-sparse-english-v0
23% better NDCG10 on TREC Deep Learning and 8% on BEIR than BM25

© 2024 Pinecone – All rights reserved

Pineconeʼs Sparse Model
Learned sparse methods estimate
the importance of keywords using
context, in contrast BM25 relies on
corpus term frequency

Fusion

Semantic Textual Similarity

Source: https://ai.googleblog.com/2018/05/advances-in-semantic-textual-similarity.html

Dense vs. Sparse Retrieval

Rank fusion

CombSUM

How it works

Improved Recall

Multi-Vector Reranking

Late interaction ranking with Multi-vector models

● ColBERT's retrieval component is
not optimized during training

● Late interaction is more expensive
than Bi-Encoder models

● In a multi-vector system, the first
stage of retrieval employs a single
vector interactions

● The second stage perform full
score computation with
multi-vector representations

Multi-vector

What is Reranking?

© 2024 Pinecone – All rights reserved

ConstBERT for Reranking
ConstBERT as a reranking
model instead of employing it in an
end-to-end retrieval system.
Simple and accurate!

Model NDCG10

ColBERT 70.1

E5 71.1

ConstBERT 74.5

E5  ConstBERT (reranking) 79.0

Cross-encoders
for reranking

Cross-encoder as a reranker

Joint Encoding: Both the query and the document are tokenized
and concatenated with a [SEP] token, which separates the two
inputs to inform the model of their distinct roles.

Contextual Representation: BERT processes the concatenated
input to generate contextual embeddings, capturing relationships
between query and document tokens.

Classification Head: The [CLS] token embedding, which
represents the combined query-document pair, is passed to a
classification head to compute a relevance score.

Relevance Scoring: The final score determines how well the
document matches the query, enabling accurate reranking of
candidate documents in search.

Large cross-encoder architectures

✅ High accuracy

But…

❌ Cannot be pre-computed

❌ Slow

❌ Not suitable for retrieval

❌ Does not scale

Computation reuse in E2Rank

Layer 1  Layer 6

Layer 7  Layer 12

Layer 13  Layer 18

Layer 19  Layer 24

…

Final rankingDoc 1 Doc 2 Doc 3 … Doc N

Most promising docs
survive across layers:
● More efficient
● Negligible loss in

accuracy

Multi-step Reranking

24

16

8

0
0 50 150 200100

La

ye
rs

Documents

24

16

8

0
0 50 150 200100

Documents

24

16

8

0
0 50 150 200100

Documents

24

16

8

0
0 50 150 200100

La

ye
rs

Documents

24

16

8

0
0 50 150 200100

Documents

24

16

8

0
0 50 150 200100

Documents

E2Rank

Others

Step 1 Step 2 Step 3 Total cost

Saving

Sav.

Efficiency-effectiveness tradeoffs

A comparison

Bi-encoder Late interaction Cross-encoder

Retrieval-ready ✅ ⚠ ❌

Precomputable ✅ ✅ ❌

Efficient at scale ✅ ⚠ ❌

High accuracy ❌ ⚠ ✅

Use as a reranker ⚠ ✅ ✅

Cross-encoder as a reranker

Embed RerankRetrieve

Storage

Generate

A composable platform
for knowledgeable AI

DEMO

© 2024 Pinecone – All rights reserved

Lost in the Middle

47

When using large context windows,
LLMs struggle to attend to the
relevant content

The power of noise Cesare

Related but not relevant
documents in retrieved
results harm generated
answers

Comparison
Problems ColBERT ConstBERT (32)

Data size ✘ N  128  4 Byte
With N up to 512, which means 78

✓ 32  128  4 Byte = 16kb

Hypothesis of
independent index

✘ Vectors cannot be concatenated
into a single vector (as they would
have different sizes)

✓ (vectors can be concatenated into a
single, fixed size vector, e.g. 32x128 =
4096)

Number of vectors ✘ Larger amount of vectors (on
average), including a bad worst case
scenario

✓ Small and predictable
(e.g. with 256 tokens, 8x reduction)

OS paging ✘ Irregular data patterns and
inefficient pre-fetching

✓ Efficient memory alignment with
OS-level paging and pre-fetching

