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ABSTRACT
Recent work has shown that neural retrieval models excel at text
ranking tasks in a supervised setting when given large amounts
of manually labeled training data. However, it remains an open
question how to train unsupervised retrieval models that are more
effective than baselines such as BM25. While some progress has
been made in unsupervised dense retrieval models within a bi-
encoder architecture, unsupervised sparse retrieval models remain
unexplored. We propose BM26, to our knowledge the first such
model, which is trained in an unsupervised manner without the
need for any human relevance judgments. Evaluations with multi-
ple test collections show that BM26 performs on par with BM25 and
outperforms Contriever, the current state-of-the-art unsupervised
dense retriever. We further demonstrate two promising avenues to
enhance lexical retrieval: First, we can combine BM25 and BM26
using simple vector concatenation to yield an unsupervised hybrid
BM51 model that significantly improves over BM25 alone. Second,
we can enhance supervised sparse models such as SPLADE with
improved initialization using BM26, yielding significant improve-
ments in in-domain and zero-shot retrieval effectiveness.
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1 INTRODUCTION
Traditional text retrieval methods such as TF–IDF and BM25 treat
documents as “bags of words” and assign term weights using a
heuristic function [27]. In general, these methods can be charac-
terized as unsupervised lexical-matching models.1 Although such
methods date back many decades, they remain strong baselines [18]
in various ranking tasks [1, 2], even in the age of deep neural net-
works [19]. Deployed in popular search platforms such as Elas-
ticsearch, traditional lexical retrieval methods such as BM25 are
widely used in industry for real-world search applications due to
their robustness to domain and query variations.

There has been much recent progress in neural retrieval models
that adopt a bi-encoder architecture to encode queries and docu-
ments independently into a representation space [14] using pre-
trained language models such as BERT [5]. These representations
can comprise either dense low-dimensional vectors [7, 14, 20, 29] or
sparse high-dimensional vectors [6, 21, 23, 32]. Various models have
been shown to be more effective than BM25 under the in-domain
supervised learning setting for various document retrieval tasks.
That is, given a sufficient amount of labeled training data compris-
ing query–document pairs that have been (manually) judged for
relevance, there is no doubt that we can train highly effective mod-
els. However, whether we can obtain an effective neural retrieval
model that performs better than BM25 in an unsupervised setting
remains an open question [11, 28].

Existing work on unsupervised neural retrieval models have
focused on dense retrievers such as ICT [16], Contriever [11], and
cpt-text [24]. At a high level, these models demonstrate how to craft
pseudo relevant query–document pairs and how to obtain a large
negative candidate pool, two important factors in the effectiveness
of unsupervised dense retrievers. To date, though, we are not aware
of any unsupervised model demonstrating effectiveness that is
unequivocally better than BM25.

We note that in the evolution of unsupervised retrieval models,
unsupervised dense retrievers introduce twomain innovations com-
pared to a traditional heuristic model such as BM25, which is used as
a point of reference: (1) they change heuristic weighting functions
to deep neural networks, and (2) they change sparse lexical represen-
tations to dense semantic representations. Although changing the
representation space gives such models more freedom to fit target
labels, they lose the ability to perform exact lexical matches, which

1While it is possible to tune parameters (𝑘1 and 𝑏 for BM25) with training data, in this
work we simply adopt default parameters (𝑘1 = 0.9 and 𝑏 = 0.4) in all experiments.
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are more robust to noisy data and domain shifts. Moreover, sparse
models are amenable to efficient retrieval using standard inverted
indexes, a well-established technology with decades of research
that has produced sophisticated query evaluation techniques. Thus,
we hypothesize that unsupervised retrieval based on sparse lexical
representations has an advantage in terms of robustness compared
to those that learn dense semantic representations. Our chain of
reasoning is easy to see if we understand BM25 as a bi-encoder
model with an unsupervised (i.e., heuristic) encoder [17]. Given
this starting point, we propose a method to train a sparse retrieval
model in an unsupervised manner. We call our model BM26 (i.e.,
what comes after BM25).

Our experiments show that BM26 alone is overall more effective
than the existing state-of-the-art unsupervised dense retriever Con-
triever [11] and performs on par with BM25 in terms of effectiveness
across a broad range of modern test collections. Furthermore, a re-
trieval model based on the simple concatenation of BM25 and BM26
representations significantly and consistently outperforms BM25
alone. We call this model BM51 (since 25+26 = 51). A key feature is
that it remains a lexical retrieval model and thus is compatible with
retrieval infrastructure based on inverted indexes. This provides a
major advantage over dense–sparse hybrid systems, which require
separate (approximate) nearest neighbor search libraries for effi-
cient top-𝑘 retrieval. We also explore unsupervised sparse retrieval
using token expansion to reduce token mismatch issues in lexical
matching. These variants, BM26e and BM51e, show potential for
further improvements in effectiveness. Finally, we demonstrate that
our unsupervised model serves as a better initialization point for
supervised sparse models such as SPLADE.

Contributions. In summary, we view this work as having three
main contributions:

• First, we introduce an unsupervised sparse retrieval model that
we call BM26. This, to our knowledge, represents the first suc-
cessful attempt to learn a neural lexical retriever in a completely
unsupervised manner. BM26 is more effective than existing dense
retrieval models in the unsupervised setting.

• Second, we demonstrate how to combine BM25 and BM26 via
simple vector concatenation to create BM51, a novel lexical re-
trieval model that is also unsupervised and remains compatible
with inverted indexes. This method has the potential to improve
“cold start” systems where no labeled data are available using
only lexical matching.

• Finally, we show that supervised sparse models can be enhanced
by using our unsupervised model as initialization.

2 BACKGROUND AND RELATEDWORK
2.1 Dense Retrieval Models
Throughout this paper we assume the standard definition of the ad
hoc retrieval problem, where given a corpus C = {𝐷1, 𝐷2, · · · , 𝐷𝑛}
comprised of an arbitrarily large collection of documents and a
query𝑄 , the system’s task is to return a top-𝑘 ranking of documents
that maximizes some metric of quality such as nDCG, MRR, etc.
The term “documents” here is used generically to refer to the unit
of retrieval, even though in actuality the system may be retrieving
passages or other units of content (e.g., images).

Dense Passage Retriever (DPR) [14], which we take as an exem-
plar of a popular and large class of models known as dense retrieval
models, adopts a bi-encoder structure to encode queries and docu-
ments separately into low-dimensional (e.g., 768 dimensions) dense
vector representation as follows:

E𝑄 = Encoder𝑄 (𝑄),E𝐷 = Encoder𝐷 (𝐷)

where the encoders are initialized with a pretrained language model
such as BERT [5]. The query representation E𝑄 and the document
representation E𝐷 are taken from the last layer output of the [CLS]
token of the corresponding encoder. The relevance between a query
and a document is measured by the dot product of their representa-
tions, Sim(𝑄,𝐷) = ⟨E𝑄 ,E𝐷 ⟩.

Dense retrieval models are typically trained (more precisely,
their underlying transformers are fine-tuned) using large amounts
of supervised data comprising human-labeled query–document
pairs. For DPR, during training, given a query 𝑄 , a labeled relevant
document 𝐷+, and 𝑛 non-relevant documents 𝐷−

1 , 𝐷
−
2 , ...𝐷

−
𝑛 , the

model is optimized by contrastive learning using infoNCE loss:

L(𝑄,𝐷+, 𝐷−
1 , 𝐷

−
2 , · · · , 𝐷

−
𝑛 )

= − log𝑝 (𝐷 = 𝐷+ | 𝑄)

= − log
exp(Sim(𝑄,𝐷+))

exp(Sim(𝑄,𝐷+)) +
𝑛∑
𝑖=1

exp(Sim(𝑄, 𝐷−
𝑖
))
.

Once the model has been trained, the document encoder can be
applied to generate document representations for every document
in the corpus (as a preprocessing step). At retrieval time, inference
is applied to the query to generate the query representation, and
the top-𝑘 most similar documents (in terms of dot products) are
retrieved. This is operationalized as a nearest neighbor search prob-
lem in dense vector space, which can be accomplished by existing
libraries such as Faiss [12].

2.2 Unsupervised Dense Retrieval Models
Training dense retrieval models requires large amounts of labeled
data. Recently, however, researchers have begun to explore train-
ing dense retrieval models in an unsupervised manner. The main
challenge is how to automatically generate positive pseudo query–
document pairs on which a model can be trained.

Two existing methods of creating such pseudo pairs are the In-
verse Cloze Task (ICT) [16] and Independent Cropping (IC) [11].
Given a text span 𝑆 composed of a sequence of tokens {𝑡1, 𝑡2, · · · , 𝑡𝑛},
ICT randomly samples a sub-span 𝑀 from 𝑆 as the pseudo query
and uses the rest of the sequence 𝑆 \𝑀 as the pseudo document to
form a positive query–document pair. The Independent Cropping
method introduced by the recent Contriever model samples two
random sub-spans 𝑆1, 𝑆2 (with replacement) to be the pseudo query
and document respectively. This has been shown to be another sim-
ple yet promising way to create positive query–document pairs. The
Contriever experiments found that IC achieves better effectiveness
than ICT for unsupervised dense retriever training [11].

Another challenge of training unsupervised dense retrievers is
how to find hard negative documents for each query. Training with
hard negatives can improve the discriminability of themodel [29]. In
a supervised learning setting, the hard negatives for a query, in the



Enhancing Sparse Retrieval via Unsupervised Learning SIGIR-AP ’23, November 26–28, 2023, Beijing, China

simplest case, can be sampled from negative documents in the top
results of an existing ranker (e.g., BM25), although the community
has since developed much more sophisticated techniques. However,
in the unsupervised setting, the most common approach to obtain
“harder” negative documents is to increase the negative candidates
pool for a larger chance of the model encountering hard negatives.
Two existing methods to achieve this are increasing the batch size
with in-batch negative training [24] or caching a large negative
representation queue with momentum update [10, 11].

3 METHODS
3.1 BM25 as a Bi-Encoder
The starting point of our approach is the representation learning
framework for IR articulated by Lin [17]. Recall that given a query𝑄
and a document𝐷 , the BM25 rankingmodel computes the following
similarity score:

Sim(𝑄, 𝐷) =
𝑛∑︁
𝑖=1

IDF(𝑞𝑖 ) ·
TF(𝑞𝑖 , 𝐷) · (𝑘1 + 1)

TF(𝑞𝑖 , 𝐷) + 𝑘1 · (1 − 𝑏 + 𝑏 · |𝐷 |
𝑎𝑣𝑔𝑑𝑙

)

where 𝑛 is the number of tokens in the query and 𝑞𝑖 is the 𝑖-th
token. This formula can be abstracted as:

Sim(𝑄,𝐷) =
𝑛∑︁
𝑖=1

𝑓 (𝑞𝑖 , 𝐷)

where 𝑓 is a function of token statistics of 𝑞𝑖 in 𝐷 and other global
statistics. Instead of summing across the tokens in the query, we
can rewrite the formula as a summation across all terms in the
entire vocabulary space, where 1 is an indicator function for a term
appearing in the query:

Sim(𝑄, 𝐷) =
|𝑉 |∑︁
𝑗=1

1(𝑣 𝑗 , 𝑄) · 𝑓 (𝑣 𝑗 , 𝐷)

This is in fact equivalent to the dot product of the query represen-
tation and the document representation in a vector space:

Sim(𝑄, 𝐷) = ⟨E𝑄 ,E𝐷 ⟩
This formulation is exactly equivalent to a bi-encoder architecture
that underlies recent transformer-based dense retrieval models
such as DPR [14]. This generic design, however, admits a number
of parametric differences, which can be characterized as design
choices we can make:
• Basis of the representation vectors: They can be dense (i.e., latent
semantic dimensions learned by transformers) or sparse (i.e., the
document vocabulary space).

• How weights are assigned: The weight of each dimension can be
assigned by a heuristic (i.e., unsupervised) function or a function
that has been learned (for example, a transformer).

In other words, BM25 adopts a bi-encoder structure where the
query and document representations are generated independently
by heuristic function “encoders” that operate on the document
vocabulary space. Similarly, dense retrieval models—exemplified
by DPR [14]—fall into the category of generating dense semantic
representations using encoders that are learned in a supervised
setting. Many existing models have demonstrated the effectiveness
of a supervised approach to learning encoders that operate on the

document vocabulary space, e.g., DeepCT [4], DeepImpact [23],
uniCOIL [21], and SPLADE [6]. Among these existing models, we
adopt the architecture proposed in uniCOIL [21] for training our
unsupervised lexical retrieval model as its similarity function has the
same parametric form as BM25. However, we change the heuristic
functions of both query and document “encoders” into neural mod-
els. This design also provides a natural point of comparison: Can
we build an unsupervised sparse retrieval model that outperforms
BM25 utilizing pretrained transformers such as BERT?

3.2 BM26: An Unsupervised Sparse Bi-Encoder
Given the general framework introduced above, BM26 can be char-
acterized as an unsupervised sparse retrieval model. The basis of
the vector representation is the BERT token space, and the vector
weights are assigned by a transformer that has been fine-tuned
without any human-labeled relevance judgments.

In our model, the similarity between a query 𝑄 and a document
𝐷 is computed by:

Sim(𝑄, 𝐷) =
|𝑉 |∑︁
𝑗=1

𝑤𝑣𝑗 ,𝑄 ·𝑤𝑣𝑗 ,𝐷

𝑤𝑣𝑗 ,𝑄 = ReLU(𝑃 · BERT(𝑄)𝑣𝑗 ) if 𝑣 𝑗 ∈ 𝑄 else 0

𝑤𝑣𝑗 ,𝐷 = ReLU(𝑃 · BERT(𝐷)𝑣𝑗 ) if 𝑣 𝑗 ∈ 𝐷 else 0
where BERT(·)𝑣𝑗 is the contextual token representation from the
last layer of BERT for token 𝑣 𝑗 and 𝑃 is a linear projection that
maps the token representation into a scalar weight. Note that if
𝑣 𝑗 occurs in a query or a document multiple times, we select the
maximum scalar weight for 𝑣 𝑗 as the weight of the token in the text.
Exactly as above, this formula is equivalent to the dot product of
the query and the document representation in a vector space with
a basis defined by the vocabulary: Sim(𝑄, 𝐷) = ⟨E𝑄 ,E𝐷 ⟩.

Following Contriever, we use independent cropping to create
pseudo-positive pairs for contrastive learning. However, we choose
not to use theMoCo [10]method to create a large negative candidate
pool, as the representations in the pool are not generated by the
latest model parameters. As an alternative, we increase the number
of negative examples by increasing the batch size to a large number
(16384 in our experiments). To achieve such a large batch size with
limited GPU memory, we adopt the Gradient Caching [9] method.
The training objective for our unsupervised model is the same as
training a dense retriever, i.e., using the infoNCE loss.

3.3 BM25 ⊕ BM26 = BM51
Since BM25 and BM26 are both unsupervised sparse retrieval mod-
els, we can combine their results to create a hybrid retrieval model
that itself remains in the space of unsupervised methods. While
linear combination of retrieval scores or reciprocal rank fusion
are popular methods for fusion, we create a novel “sparse–sparse”
hybrid by vector concatenation in this work. We name this model
“BM51” as it is the fusion of BM25 and BM26 (25+26=51).

Specifically, the query representation and document representa-
tion of the BM51 retrieval model are computed by:

E𝑄BM51 = E𝑄BM25 ⊕ 𝛼 · E𝑄BM26

E𝐷BM51 = E𝐷BM25 ⊕ 𝛽 · E𝐷BM26
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where ⊕ represents the vector concatenation operation and 𝛼, 𝛽

adjust the relative contributions of each representation to the final
model. Since the token weights from BM25 and BM26 are on dif-
ferent scales, we first normalize the token weights from the two
models into integers in the range(0, 256); i.e., these become, in
essence, impact scores. For simplicity and to retain the unsuper-
vised setup, we keep 𝛼 = 𝛽 = 1 after normalizing the token weights,
which means that BM25 and BM26 are weighted equally. The BM51
query–document similarity is also computed as a dot product.

A detail worth noting: the vector bases of the individual repre-
sentation vectors from BM25 and BM26 are different, since they
are determined by the tokenizer used to process the text. In our im-
plementation of BM25, the vocabulary space is defined by a Lucene
analyzer (which, in the case of the MS MARCO passage collection,
contains 2.7M unique tokens). In contrast, BM26 operates in the
vocabulary space of BERT subwords, which contains 30,522 unique
tokens. Thus, in our implementation, the vocabulary size of BM51
is only marginally bigger than that of BM25.

A key feature of our fusion-via-vector-concatenation approach is
that BM51 remains a lexical-matching model. This means that top-𝑘
retrieval can take advantage of existing infrastructure built around
inverted indexes. In addition, vector concatenation presents an
advantage over other popular fusion techniques such as the linear
combination of scores or reciprocal rank fusion, both of which
involve performing retrieval twice and post-processing two ranked
lists. In other words, BM51 can serve as a drop-in replacement
for BM25. That is, it can serve as a first-stage ranker to provide
candidates for further reranking, it can be further combined with
supervised models, etc.

3.4 Adding Token Expansion
BM26 adopts the same parametric form as BM25, which means
the lexical representation is restricted to tokens that appear in
the original text. However, vocabulary mismatch is common in the
lexical retrieval setting. SPLADE [6] utilizes the MLM layer of BERT
to perform expansion for tokens in the original text: the purpose
here is to assign weights to tokens that have close meanings to the
existing tokens.

SPLADE was originally designed for the supervised learning
setting. We adopt its architecture here to achieve token expansion
for unsupervised lexical representation learning. Following the same
naming convention, we denote this unsupervised sparse retrieval
model with expansion as BM26e. Specifically, the similarity between
the pseudo query–document pairs is computed by:

Sim(𝑄, 𝐷) =
|𝑉 |∑︁
𝑗=1

𝑤𝑣𝑗 ,𝑄 ·𝑤𝑣𝑗 ,𝐷

𝑤𝑣𝑗 ,𝑄 = max
𝑖∈ |𝑄 |

log(1 + ReLU(MLM(BERT(𝑄))𝑣𝑖,𝑗 ))

𝑤𝑣𝑗 ,𝐷 = max
𝑖∈ |𝐷 |

log(1 + ReLU(MLM(BERT(𝐷))𝑣𝑖,𝑗 ))

where the term impact of a token 𝑣 𝑗 from the vocabulary space𝑉 is
determined by the max-pooled MLM layer output, corresponding
to the token, across all input tokens in a query 𝑄 or document 𝐷 .
During training, additional FLOPS loss [25] is added to the infoNCE

loss to control the sparsity of query and document expansion:

ℓFLOPS =
∑︁
𝑗∈𝑉

𝑤2
𝑗

This is calculated as the sum of the squares of the average impacts
of each token within a batch. The FLOPS loss for the query and the
document are weighted by 𝜆𝑞 and 𝜆𝑑 . We set both to 0.001 in all
our experiments for BM26e.

Similar to the way we build BM51 = BM25 ⊕ BM26, we assemble
the “with expansion” version BM51e = BM25 ⊕ BM26e. We follow
the same vector concatenation and token weights processing as
described in Section 3.3.

4 ENHANCING UNSUPERVISED RETRIEVAL
4.1 Experimental Setup
4.1.1 Data. Following the data crafting method in Contriever, we
use Independent Cropping on the CCNet corpus [3], an English
corpus with 700 million documents extracted from web crawls,
to create the unsupervised training data. Specifically, we concate-
nate all the natural documents in CCNet together and treat each
500-token split as a document. Each training pair is obtained by
independent cropping from a random span of 256 tokens in a docu-
ment. We also apply 10% random token deletion on both the pseudo
query and the pseudo document as data augmentation.

4.1.2 Models. We train BM26 and BM26e following the methods
proposed in Sections 3.2 and 3.4. We use bert-base-uncased as
initialization and train 10k steps with batch size 16384. Our model
is trained on a single AWS EC2 instance with 8× A100 40 GB GPUs,
with code based on the open-source toolkit Tevatron [8].

Our retrieval experiments are performed using the Pyserini IR
toolkit [18] using the “fake words” trick, which is a common tech-
nique that allows sparse retrieval models to transparently reuse
inverted indexes and existing query evaluation machinery [22].
For each document vector, Pyserini (internally) generates a “fake
document” where a token is repeated a number of times equal to
its (quantized) weight; i.e., if a token gets a weight of 5, the fake
document contains five copies of the token. As part of the normal
indexing process, these weights are written to the term frequency
position in the postings of a standard inverted index. Inner product
can be implemented as a similarity function that computes the prod-
uct between the query “term frequency” and the document “term
frequency” (i.e., both are in actuality the original weights assigned
in the respective vectors). BM51 is implemented exactly in the man-
ner described in Section 3.3: We materialize the document vectors
from BM25 and BM26 and then feed the concatenated vectors back
into Pyserini for indexing and retrieval.

Finally, we evaluate two variants that allow us to precisely at-
tribute differences in model effectiveness:
• BM25wp: This represents the BM25 weighting function applied
directly to wordpiece tokens. That is, BM25wp and BM26 share
exactly the same vector basis, except BM26 weights are computed
by a transformer model.

• BM25′: This represents BM25⊕BM25wp, or the concatenation of
“standard” BM25 and BM25wp vectors. That is, BM25′ and BM51
share exactly the same vector basis, differing only in how the
BM26 portion of the weights are assigned.
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Method Rep. MS MARCO NQ TriviaQA
sparse/dense MRR@10 R@1k Top20 Top100 Top20 Top100

(1) BM25 sparse 18.4 85.3 62.9 78.3 76.4 83.2
(2) BM25wp sparse 17.5 82.6 63.2 77.8 73.8 81.4
(3) BM25′ = BM25⊕BM25wp sparse 18.9 86.9 64.4 79.4 76.5 83.5

(4) BM26 sparse 19.0▲ 88.6 63.9▲ 78.8 74.3▼ 82.5
(5) BM26e sparse 18.1 92.1 70.0▲ 83.3 78.7▲ 85.2
(6) BM51 = BM25⊕BM26 sparse 22.2▲ 92.0 68.1▲ 81.6 77.6▲ 83.9
(7) BM51e = BM25⊕BM26e sparse 20.2▲ 93.5 71.8▲ 84.2 79.3▲ 85.5

(a) Contriever dense 16.0 88.1 67.8 82.1 74.2 83.2
(b) cpt-text-S dense 19.9 - 65.5 77.2 75.1 81.7

Table 1: Retrieval effectiveness of BM26 and BM51 compared to baselines and other unsupervised retrieval models on MS
MARCO, NQ, and TriviaQA. We performed significance tests comparing BM26 and BM51 to BM25, indicated by ▲/▼ .

(1) BM25 (2) BM25wp (3) BM25′ (4) BM26 (5) BM26e (6) BM51 (7) BM51e (a) Contriever (b) cpt-text-S
sparse sparse sparse sparse sparse sparse sparse dense dense

Arguana 39.7 36.4 39.0 38.1▼ 42.2▲ 41.7▲ 43.1▲ 37.9 38.7
Climate-FEVER 16.5 15.8 17.1 15.8 18.9▲ 18.9▲ 20.0▲ 15.5 15.8
DBpedia 31.8 28.4 31.1 28.6▼ 33.0 34.0▲ 36.5▲ 29.3 27.2
FEVER 65.1 65.8 67.3 74.4▲ 75.1▲ 75.2▲ 77.9▲ 68.2 57.1
FiQA 23.6 21.8 24.2 25.8▲ 28.9▲ 28.3▲ 30.1▲ 24.5 34.1
HotpotQA 63.3 59.3 63.4 63.6 64.0▲ 68.2▲ 67.9▲ 48.1 51.5
NFCorpus 32.2 31.4 32.8 32.4 33.3 34.2▲ 34.7▲ 31.7 32.0
NQ 30.6 30.5 31.8 27.9▼ 29.9 33.9▲ 33.4▲ 25.4 -
Quora 78.9 73.0 78.0 77.5▼ 82.4▲ 82.3▲ 83.5▲ 83.5 68.1
SCIDOCS 14.9 13.8 15.0 15.0 16.0▲ 15.9▲ 16.8▲ 14.9 -
Scifact 67.9 67.2 69.4 66.7 67.9 69.8▲ 70.9▲ 64.9 65.4
TREC-COVID 59.5 56.5 60.0 54.4 34.9▼ 65.6 53.9 27.4 52.9
Touche-2020 44.2 46.6 50.2 26.1▼ 23.0▼ 34.7▼ 28.6▼ 19.3 21.0

Avg. 43.7 42.0 44.7 42.0 42.3 46.4 46.0 37.7 -

Table 2: Retrieval effectiveness (nDCG@10) of BM26 and BM51 compared to baselines and other unsupervised retrieval models
on BEIR. We performed significance tests comparing BM26 and BM51 to BM25, indicated by ▲/▼ .

4.1.3 Evaluation. We evaluate our models on the following three
datasets that draw from diverse domains:

• MS MARCO Passage Ranking [1]: a web search dataset with 8.8
million passages and 6980 queries in the development set for eval-
uation. Effectiveness is measured by MRR@10 and Recall@1k.

• NaturalQuestions [15] and TriviaQA [13]: open-domain question
answering datasets that use English Wikipedia as the corpus.
Effectiveness is measured by top-20/100 retrieval accuracy.

• BEIR [28]: a collection of datasets for zero-shot evaluation of
search and related tasks. We evaluate our models on the 13 pub-
licly available datasets; effectiveness is measured by nDCG@10.

4.2 Results
Table 1 presents results on MS MARCO, NQ and TriviaQA, and
Table 2 presents results on the 13 BEIR datasets. In both tables,
we perform significance testing using paired 𝑡-tests (𝑝 < 0.05);
the symbols ▲/▼ indicate significant differences (better/worse). The
BM25 baselines are obtained by following the reproduction guides
in the open-source Anserini IR toolkit [31]. The results of Contriever
and cpt-text-S are copied from the original papers.

4.2.1 Evaluation of BM26. First, we compare BM26 with BM25.
The high level conclusion is that they are roughly on par, which
can be seen by comparing row (4) with row (1) in Table 1 on MS
MARCO, NQ, and TriviaQA, and by comparing column (4) with
column (1) in Table 2 for the BEIR datasets. Despite the statistical
significance of some differences, overall the effect sizes are small:
less than a point in most cases.

For BM25, the default Lucene analyzer in Anserini generates
2.7M unique tokens for the MS MARCO passage corpus, which
is orders of magnitude larger than the vocabulary space of the
bert-base-uncased tokenizer (30,522 unique subwords). To iso-
late the effects of this difference, we turn to BM25wp, which applies
BM25 term weighting on wordpiece tokens. Thus, BM25wp shares
exactly the same representation space as BM26, providing a fair
comparison between neural and heuristic encoders. Here, we seen
that BM26 outperforms BM25wp. Turning our attention to effec-
tiveness on the BEIR datasets in Table 2, column (4) vs. column
(1), we see that BM26 is significantly better than BM25 for two
datasets and worse for five datasets. Overall, BM26 is 1.7 points
worse than BM25, but BM26 and BM25wp achieve the same level of
effectiveness.
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Method MRR@10 Speed

BM25 18.4 100 %

BM51 22.2 34 %
- min-idf=1 22.3 39 %
- min-idf=2 22.2 47 %
- min-idf=3 22.1 70 %
- min-idf=4 19.9 139 %
- min-idf=5 15.9 253 %

Table 3: Relative retrieval performance (in terms of QPS) of
BM51 compared against BM25 with different levels of query
token filtering based on IDF values.

Comparing BM26 to Contriever and cpt-text-S on the datasets
in Table 1, shown in row (a) and row (b), respectively, we see
some cases where our method performs better and other cases
where our method performs worse. At a high level, it would be fair
to characterize effectiveness as “comparable”. On BEIR, however,
BM26 scores four points higher than Contriever. Although cpt-text-
S results are not available for all BEIR datasets, it does appear that
BM26 obtains higher scores in most cases. Note that significance
tests are not possible here because we do not have access to the
raw run files from these models.

4.2.2 Evaluation of BM51. Next, we investigate how BM26 helps
improve BM25 via our vector concatenation technique. The main
comparison condition is between BM51 (= BM25 ⊕ BM26) and
BM25. We perform significance testing and denote better/worse
results exactly in the same manner as above.

From Table 1, we see significant improvements across all three
datasets, comparing row (6) to row (1). In the case ofMSMARCO,we
observe a nearly four point gain, which translates into a 21% relative
improvement. From Table 2, comparing column (6) with column (1),
we see that BM51 is significantly more effective than BM25 for all
BEIR datasets except Tóuche-2020. This corpus contains many long
documents, which might be the reason why our model performs
worse than any BM25 variant. However, Tóuche-2020 appears to be
an outlier, as other existing models [6, 11, 24] also perform poorly.
We emphasize that in all cases, our gains are obtained without the
use of manual labels.

To untangle the effectiveness improvements due to BM26 from
improvements from simply having a hybrid vocabulary base, we can
compare BM51 to BM25′ = BM25⊕BM25wp. Recall that the latter
represents the concatenation of BM25 and BM25wp: the BM25 com-
ponents are identical, and as explained above, BM25wp and BM26
share exactly the same representation space, differing only in how
term weights are computed. We see that BM51 consistently outper-
forms BM25′, which demonstrates that BM26 provides additional
relevance signals beyond a simple vocabulary space hybrid.

Comparing against dense retrieval models: We see that BM51 is
more effective than Contriever and cpt-text-S across most datasets.
On MS MARCO, BM51 outperforms Contriever by over six points,
and on BEIR, nine points.

As shown in Table 3, the performance of BM51 (measured in
terms of queries-per-second throughput on a single thread) is lower
than BM25 due to its denser representation. However, this effi-
ciency can be enhanced while maintaining retrieval effectiveness

by filtering out query tokens with low inverse document frequency
during the search process (i.e., skipping excessively long inverted
lists). As the table indicates, when the minimum inverse document
frequency (min-idf) is set to 3 or 4, performance approaches that
of BM25, but with BM51 exhibiting superior effectiveness.

4.2.3 Evaluation of BM26e and BM51e. Finally, we investigate the
effectiveness of BM26e and BM51e, which incorporate token ex-
pansion to address the vocabulary mismatch issue. We compare
BM26e and BM51e with their non-expanded counterparts, BM26
and BM51, respectively.

In Table 1, comparing row (5) to row (4), we observe that BM26e
performs better than BM26 on NQ, and TriviaQA. This indicates
that token expansion is beneficial for improving retrieval effec-
tiveness. In Table 2, comparing column (7) with column (6), we
find that BM51e is more effective than BM51 on 9 out of the 13
BEIR datasets. These results highlight the value of token expansion
in addressing the vocabulary mismatch issue and improving the
retrieval effectiveness of unsupervised sparse retrieval models.

5 ENHANCING SUPERVISED RETRIEVAL
5.1 Experimental Setup
5.1.1 Data. We use the training set of the MS MARCO passage
ranking test collection [1] to train our models. During training,
positive labels are taken from human judgments and the in-batch
negatives are selected from the BM25 negatives. In-domain retrieval
effectiveness is evaluated on the development set, measured by
MRR@10 and Recall@1k. Zero-shot retrieval effectiveness is evalu-
ated on the aforementioned BEIR datasets, measured by nDCG@10.

5.1.2 Models. BM26e has shown higher unsupervised retrieval ef-
fectiveness than BM26, based on results reported in Section 4.2.
Therefore, in these experiments, we study the effectiveness of
using BM26e as initialization to train SPLADE [6], denoted as
SPLADEBM26e. Specifically, we replace the bert-base-uncased
initialization with the BM26e checkpoint and then fine-tune the
model on the MS MARCO passage training set for 3 epochs with
batch size 256. Each training example contains 1 positive passage
and 7 sampled BM25 hard negative passages. We use the last check-
point for both in-domain and zero-shot evaluation.

5.1.3 Baselines. We compare our SPLADEBM26e model with other
representative supervised sparse models like uniCOIL [21] and
the original SPLADE [6]. We have built our own implementa-
tion of SPLADE, denoted SPLADErepro, which has the same hy-
perparameter setting as SPLADEBM26e, but is initialized with the
standard bert-base-uncased checkpoint. We report results for
both SPLADErepro and the original SPLADE, copied from the au-
thors’ paper. While recent studies suggest that the effectiveness
of SPLADE and other supervised sparse models can be further
enhanced through hard negative mining and distillation from a
cross-encoder reranker [6, 20, 26, 29], we have only compared mod-
els trained on BM25 hard negatives to maintain a fair comparison.

5.2 Results
5.2.1 Evaluation of In-Domain Retrieval. In Table 5, we present in-
domain retrieval results on the MS MARCO passage ranking task.
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(1) BM25 (2) BM51e (3) uniCOIL (4) SPLADE (5) SPLADErepro (6) SPLADEBM26e (a) CoCondenser (b) Contriever
sparse sparse sparse sparse sparse sparse dense dense

Arguana 39.7 43.1 39.6 43.9 47.4 53.5 29.9 44.6
Climate-FEVER 16.5 20.0 18.2 19.9 21.2 21.9 14.4 23.7
DBPedia 31.8 36.5 33.8 36.6 38.8 41.8 36.3 41.3
FEVER 65.1 77.9 81.2 73.0 78.1 81.4 49.5 75.8
FiQA 23.6 30.1 28.9 28.7 30.0 34.2 27.6 32.9
HotpotQA 63.3 67.9 66.7 63.6 63.7 70.7 56.3 63.8
NFCorpus 32.2 34.7 33.3 31.3 33.9 34.6 32.5 32.8
NQ 30.6 33.4 42.5 46.9 48.6 52.2 48.7 49.5
Quora 78.9 83.5 66.3 83.5 75.5 84.4 85.6 86.5
SCIDOCS 14.9 16.8 14.4 14.5 14.5 15.6 13.7 16.5
SciFact 67.9 70.9 68.6 62.8 65.8 70.8 61.5 67.7
TREC-COVID 59.5 53.9 64.0 67.3 72.7 70.1 71.2 59.6
Touche-2020 44.2 28.6 29.8 31.6 28.0 29.8 19.1 23.8

average 43.7 46.0 45.3 46.4 47.6 50.8 42.0 47.5

Table 4: Zero-shot retrieval effectiveness of SPLADE initialized with BM26e, compared to baselines and other supervised sparse
retrieval models on BEIR. All supervised models are trained with only BM25 hard negatives.

MRR@10 Recall@1k

(1) BM25 18.4 85.3
(2) BM51e 20.2 93.5
(3) SPLADE 34.0 96.5
(4) SPLADErepro 33.5 97.0
(5) SPLADEBM26e 35.2 98.0

Table 5: In-domain retrieval effectiveness of SPLADE initial-
ized with BM26e, compared to baselines and other supervised
sparse retrieval models on MSMARCO passage ranking task.

Our SPLADEBM26e model outperforms the other baseline models
in terms of both MRR@10 and Recall@1k, thus illustrating the
benefits of our proposed approach for model initialization. The
SPLADEBM26e model achieves an MRR@10 of 35.2, which is a 1.7
point improvement over SPLADE with the default initialization
(note that our SPLADErepro performs slightly worse). These results
demonstrate that using our BM26e unsupervised sparse retrieval
model to initialize the weights of supervised models can improve
effectiveness.

5.2.2 Evaluation of Zero-Shot Retrieval. In Table 4, we provide zero-
shot retrieval effectiveness results on the BEIR datasets. We see
that SPLADEBM26e consistently outperforms other models in most
retrieval tasks, thus demonstrating its superior generalizability in a
zero-shot retrieval scenario. On average, SPLADEBM26e achieves an
overall score of 50.8, which is 3 points higher than the SPLADErepro
model initialized by bert-base-uncased (the original SPLADE is
slightly less effective). This further solidifies the effectiveness of
our proposed approach in using our unsupervised sparse retrieval
model as the initialization of a supervised model for enhancing
retrieval effectiveness in a zero-shot setting.

We note that for all datasets in BEIR, with the exception of Ar-
guana, we maintain all token weights for both query and document
sparse representations during search. However, for Arguana, which
is a dataset designed for passage-to-passage counter-argument re-
trieval, we discover that applying a top-𝑘 token mask [30] with
𝑘 = 128 to sparsify both query and document representations yields

Top-𝑘 Mask SPLADErepro SPLADEBM26e

∞ 41.5 37.8
512 41.5 44.0
256 42.9 50.3
128 47.4 53.5
64 43.7 51.9

Table 6: Comparison of nDCG@10 of applying different top-
𝑘 masks to query and document representations from the
SPLADE model on the Arguana dataset.

significantly higher effectiveness than the default setting, as shown
in Table 6. We hypothesize that reducing the 𝑘 value could help
filter out tokens that align with low-level contexts, potentially caus-
ing distractions during retrieval. We also believe there is potential
to improve asymmetric retrieval by applying different 𝑘 values to
query and document representations. However, these additional
explorations are saved for future work.

6 CONCLUSION
In this work, we propose an unsupervised sparse retrieval model
called BM26 that adapts techniques originally designed for dense
retrieval to a sparse lexical representation space. We find that our
unsupervised sparse approach is on par with BM25 but holds great
potential to enhance existing lexical retrieval systems. Our unsuper-
vised sparse retriever shines in scenarios where there is a scarcity of
relevance judgements. It successfully augments heuristic retrieval
methods such as BM25 through the creation of a hybrid vector
space. This allows for a “cold start” retrieval system to achieve
higher effectiveness than with BM25 alone. Furthermore, given suf-
ficient relevance judgements, our unsupervised sparse model (for
instance, BM26e) can serve as better initialization for supervised
fine-tuning with human-labeled relevance judgments.
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