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ABSTRACT
�ery processing is one of the main bo�lenecks in large-scale

search engines. Retrieving the top k most relevant documents for

a given query can be extremely expensive, as it involves scoring

large amounts of documents. Several dynamic pruning techniques

have been introduced in the literature to tackle this problem, such

as BlockMaxWAND, which splits the inverted index into constant-

sized blocks and stores the maximum document-term scores per

block; this information can be used during query execution to

safely skip low-score documents, producing many-fold speedups

over exhaustive methods.

We introduce a re�nement forBlockMaxWAND that uses variable-

sized blocks, rather than constant-sized. We set up the problem of

deciding the block partitioning as an optimization problem which

maximizes how accurately the block upper bounds represent the

underlying scores, and describe an e�cient algorithm to �nd an

approximate solution, with provable approximation guarantees.

�rough an extensive experimental analysis we show that our

method signi�cantly outperforms the state of the art roughly by a

factor 2×. We also introduce a compressed data structure to repre-

sent the additional block information, providing a compression ratio

of roughly 50%, while incurring only a small speed degradation, no

more than 10% with respect to its uncompressed counterpart.
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1 INTRODUCTION
Web Search Engines [6, 19] manage an ever-growing amount of

Web documents to answer user queries as fast as possible. To keep

up with such a tremendous growth, a focus on e�ciency is crucial.

�ery processing is one of the hardest challenges a search engine

has to deal with, since its workload grows with both data size and

query load. Although hardware is ge�ing less expensive and more
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powerful every day, the size of the Web and the number of searches

is growing at an even faster rate.

�ery processing in search engines is a fairly complex process;

queries in a huge collection of documents may return a large set of

results, but users are o�en interested the most relevant documents,

usually a small number (historically, the ten blue links). �e rele-

vance of a document can be arbitrarily expensive to compute, which

makes it prohibitive to evaluate all the documents that match the

queried terms; query processing is thus usually divided in multiple

phases. In the �rst phase, the query is evaluated over an inverted

index data structure [3, 29] using a simple scoring function, pro-

ducing a medium-sized set of candidate documents, namely the top

k scored; these candidates are then re-ranked using more complex

algorithms to produce the �nal set of documents shown to the user.

In this work we focus on improving the e�ciency of the �rst

query processing phase, which is responsible for a signi�cant frac-

tion of the overall work. In such phase, the scoring function is

usually a weighted sum of per-term scores over the terms in the

document that match the query, where the weights are a function

of the query, and the scores a function of the occurrences of the

term in the document. An example of such a scoring function is

the widely used BM25 [24].

An obvious way to compute the top k scored documents is to

retrieve all the documents that match at least one query term us-

ing the inverted index, and compute the score on all the retrieved

documents. Since exhaustive methods like this can be very ex-

pensive for large collections, several dynamic pruning techniques

have been proposed in the last few years. Dynamic pruning makes

use of the inverted index, augmented with additional data struc-

tures, to skip documents during iteration that cannot reach a su�-

cient score to enter the top k . �us, the �nal result is the same as

exhaustive evaluation, but obtained with signi�cantly less work.

�ese techniques include MaxScore [30], WAND [4], and Block-
MaxWAND (BMW) [10].

We focus our a�ention on the WAND family of techniques.

WAND augments the posting list of each term with the maximum
score of that term among all documents in the list. While processing

the query by iterating on the posting lists of its terms, it maintains

the top k scores among the documents evaluated so far; to enter

the top k , a new document needs to have score larger than the

current k-th score, which we call the threshold. WAND maintains

the posting list iterators sorted by current docid; at every step, it

adds up the maximum scores of the lists in increasing order, until

the threshold is reached. It can be seen that the current docid of

the �rst list that exceeds the threshold is the �rst docid that can
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reach a score higher than the threshold, so the other iterators can

safely skip all the documents up to that docid.

�e core principle is that if we can upper-bound the score of a

range of docids, and that upper bound is lower than the threshold,

then the whole range can be safely skipped. As such, WAND com-

putes the upper bounds of document by using the maximum score

of the terms appearing in the document. Nevertheless, it should

be clear that the pruning e�ectiveness is highly dependent on the

accuracy of the upper bound: the more precise the upper bound, the

more docids we can skip, and, thus, the faster the query processing.

BMW improves the accuracy of the upper bounds by spli�ing the

posting lists into constant-sized blocks of postings, and storing the

maximum score per block, rather than per list only. �is way, the

upper bound of a document is the sum of the maximum score of the

blocks in which it may belong to. �is approach gives more precise

upper bounds because the scores of the blocks are usually much

smaller than the maximum in their lists. Experiments con�rm this

intuition, and, indeed, BMW signi�cantly outperforms WAND [10].

However, the coarse partitioning strategy of BMW does not take

into consideration regularities or variances of the scores that may

occur in the posting lists and their blocks. As an example, consider

a posting with a very high score surrounded by postings with much

lower scores. �is posting alone is responsible for a high inaccuracy

in the upper bounds of all its neighbors in the same block. Our

main observation is that the use of variable-sized blocks would allow
to be�er adapt to the distribution of the scores in the posting list.
�e bene�ts of variable-sized blocks are apparent in the simple

example above, where it is su�cient to isolate the highly-scored

posting in its own block to improve the upper bounds of several

other postings, stored in di�erent blocks. More formally, for a block

of postings we de�ne the block error as the sum of the individual

posting errors, i.e., the sum of the di�erences between the block

maximum score and the actual score of the posting. Our goal is

to �nd a block partitioning minimizing the sum of block errors

among all blocks in the partitioning. Clearly, this corresponds to

minimizing the average block error. Naı̈vely, the minimum cost

partitioning would correspond to blocks containing only a single

posting. However, if the blocks are too small, the average skip at

query time will be short and, thus, this solution does not carry out

any bene�t. In this work we introduce the problem of �nding a

partition of posting lists into variable-sized blocks such that the

the sum of block errors is minimized, subject to a constraint on

the number of blocks of the partition. �en, we will show that

an approximately optimal partition can be computed e�ciently.

Experiments on standard datasets show that our Variable BMW
(VBMW) signi�cantly outperforms BMW and the other state-of-

the-art strategies.

Our Contributions. We list here our main contributions.

(1) We introduce the problem of optimally partitioning the

posting lists into variable-sized blocks to minimize the av-

erage block error, subject to a constraint on the number of

blocks. We then propose a practical optimization algorithm

which produces an approximately optimal solution in al-

most linear time. We remark that existing solutions for this

optimization problem run in at least quadratic time, and,

thus, they are unfeasible in a practical se�ing. Experiments

show that this approach is able to reduce the average score

error up to 40%, con�rming the importance of optimally

partitioning posting list into variable-sized blocks.

(2) We propose a compression scheme for the block data struc-

tures, compressing the block boundary docids with Elias-

Fano and quantizing the block max scores, obtaining a max-

imum reduction of space usage w.r.t. the uncompressed

data structures of roughly 50%, while incurring only a small

speed degradation, no more than 10% with respect to its

uncompressed counterpart.

(3) We provide an extensive experimental evaluation to com-

pare our strategy with the state of the art on standard

datasets of Web pages and queries. Results show that

VBMW outperforms the state-of-the-art BMW by a factor

of roughly 2×.

2 BACKGROUND AND RELATEDWORK
In the following we will provide some background on index or-

ganization and query processing in search engines. We will also

summarize and discuss the state-of-the-art query processing strate-

gies with a particular focus on the current most e�cient strat-

egy, namely BlockMaxWAND, leveraging block-based score upper

bound approximations.

Index Organization. Given a collection D of documents, each

document is identi�ed by a non-negative integer called a document
identi�er, or docid. A posting list is associated to each term appear-

ing in the collection, containing the list of the docids of all the

documents in which the term occurs. �e collection of the posting

lists for all the terms is called the inverted index of D, while the

set of the terms is usually referred to as the dictionary. Posting

lists typically contain additional information about each document,

such as the number of occurrences of the term in the document,

and the set of positions where the term occurs [5, 19, 32].

�e docids in a posting list can be sorted in increasing order,

which enables the use of e�cient compression algorithms and

document-at-a-time query processing. �is is the most common

approach in large-scale search engines (see for example [8]). Alter-

natively, the posting lists can be frequency-sorted [30] or impact-

sorted [2], still providing a good compression rates as well as good

query processing speed. However, there is no evidence of such in-

dex layouts in common use within commercial search engines [21].

Inverted index compression is essential to make e�cient use of

the memory hierarchy, thus maximizing query processing speed.

Posting list compression boils down to the problem of representing

sequences of integers for both docids and frequencies. Representing

such sequences of integers in compressed space is a fundamental

problem, studied since the 1950s with applications going beyond

inverted indexes. A classical solution is to compute the di�erences

of consecutive docids (deltas), and encode them with uniquely-

decodable variable length binary codes; examples are unary codes,

Elias Gamma/Delta codes, and Golomb/Rice codes [25]. More re-

cent approaches encode simultaneously blocks of integers in order

to improve both compression ratio and decoding speed. �e un-

derlying idea is to partition the sequence of integers into blocks of

�xed or variable length and to encode each block separately with

di�erent strategies (see e.g., [17, 22, 28] and references therein).
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More recently, the Elias-Fano representation of monotone se-

quences [11, 12] has been applied to inverted index compression [31],

showing excellent query performance thanks to its e�cient random

access and search operations. However, it fails to exploit the local

clustering that inverted lists usually exhibit, namely the presence

of long subsequences of close identi�ers. Recently, O�aviano and

Venturini [23] described a new representation based on partitioning

the list into chunks and encoding both the chunks and their end-

points with Elias-Fano, hence forming a two-level data structure.

�is partitioning enables the encoding to be�er adapt to the local

statistics of the chunk, thus exploiting clustering and improving

compression. �ey also showed how to minimize the space occu-

pancy of this representation by se�ing up the partitioning as an

instance of an optimization problem, for which they present a linear

time algorithm that is guaranteed to �nd a solution at most (1 + ϵ )
times larger than the optimal one, for any given ϵ ∈ (0, 1). In the

following we will use a variation of their algorithm.

�ery Processing. In Boolean retrieval a query, expressed as a

(multi-)set of terms, can be processed in conjunctive (AND) or

disjunctive (OR) modes, retrieving the documents that contain

respectively all the terms or at least one of them. Top-k ranked
retrieval, instead, retrieves the k highest scored documents in the

collection, where the relevance score is a function of the query-

document pair. Since it can be assumed that a document which

does not contain any query term has score 0, ranked retrieval can

be implemented by evaluating the query in disjunctive mode, and

scoring the results. We call this algorithm RankedOR.

In this work we focus on linear scoring functions, i.e., where the

score of a query-document pair can be expressed as follows:

s (q,d ) =
∑

t ∈q∩d

wt st,d

where the wt are query-dependent weights for each query term,

and the st,d are scores for each term-document pair. Such scores

are usually a monotonic function of the occurrences of the term in

the document, which can be stored in the posting list alongside the

docid (usually referred to as the term frequency).

It can be easily seen that the widely used BM25 relevance score [24]

can be cast in this framework. In BM25, the weights wt are derived

from t ’s inverse document frequency (IDF) to distinguish between

common (low value) and uncommon (high value) words, and the

scores st,d are a smoothly saturated function of the term frequency.

In all our experiments we will use BM25 as the scoring function.

�e classical query processing strategies to match documents to

a query fall in two categories: in a term-at-a-time (TAAT) strategy,

the posting lists of the query terms are processed one at a time, ac-

cumulating the score of each document in a separate data structure.

In a document-at-a-time (DAAT) strategy, the query term postings

lists are processed simultaneously keeping them aligned by docid.

In DAAT processing the score of each document is fully computed

considering the contributions of all query terms before moving to

the next document, thus no auxiliary per-document data structures

are necessary. We will focus on the DAAT strategy as it is is more

amenable to dynamic pruning techniques.

Solving scored ranked queries exhaustively with DAAT can be

very ine�cient. Various techniques to enhance retrieval e�ciency

have been proposed, by dynamically pruning docids that are un-

likely to be retrieved. Among them, the most popular are MaxS-
core [30] and WAND [4]. Both strategies augment the index by

storing for each term its maximum score contribution, thus allow-

ing to skip large segments of posting lists if they only contain terms

whose sum of maximum scores is smaller than the scores of the top

k documents found up to that point.

�e alignment of the posting lists during MaxScore and WAND
processing can be achieved by means of the NextGEQt (d ) operator,

which returns the smallest docid in the posting list t that is greater

than or equal to d . �is operator can signi�cantly improve the

posting list traversal speed during query processing, by skipping

large amounts of irrelevant docids. �e Elias-Fano compression

scheme provides an e�cient implementation of the NextGEQt (d )
operator, which is crucial to obtain the typical subsecond response

times of Web search engines.

Both MaxScore and WAND rely on upper-bounding the con-

tribution that each term can give to the overall document score,

allowing to skip whole ranges of docids [18].

However, both employ a global per-term upper bound, that is, the

maximum score st,d among all documentsd which contain the term

t . Such maximum score could be signi�cantly larger than the typical

score contribution of that term, in fact limiting the opportunities

to skip large amounts of documents. For example, a single outlier

for an otherwise low-score term can make it impossible to skip any

document that contains that term.

To tackle this problem, Ding and Suel [10] propose to augment

the inverted index data structures with additional information to

store more accurate upper bounds: at indexing time each posting

list is split into consecutive blocks of constant size, e.g., 128 postings

per block. For each block the score upper bound is computed and

stored, together with largest docid of each block.

�ese local term upper bounds can then be exploited by adapting

existing algorithms such as MaxScore and WAND to make use of

the additional information. �e �rst of such algorithms is Block-
MaxWAND (BMW) [10]. �e authors report an average speedup of

BMW against WAND of 2.78 – 3.04. Experiments in [9] report a

speedup of ∼3.00 and ∼1.25 of BMW with respect to WAND and

MaxScore, respectively. Several versions of Block-Max MaxScore
(BMM), the MaxScore variant for block-max indexes, have been

proposed in [7, 9, 26]. In [9], the authors implementation of BMM
is 1.25 times slower than BMW on average.

3 VARIABLE BLOCK-MAXWAND
As mentioned in the previous section, BMW leverages per-block

upper bound information to skip whole blocks of docids during

query processing (we refer to the original paper [10] for a detailed

description of the algorithm). �e performance of the algorithm

highly depends on the size of the blocks: if the blocks are too

large, the likelihood of having at least one large value in each block

increases, causing the upper bounds to be loose. If they are too

small, the average skip will be short. In both cases, the pruning

e�ectiveness may reduce signi�cantly. A sweet spot can thus be

determined experimentally.

�e constant-sized block partitioning of BMW does not take

into consideration regularities or variances of the scores that may
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Figure 1: Block errors in constant (le�) and variable (right)
block partitioning.

occur in the posting lists and their blocks. �e use of variable-sized

blocks allows to be�er adapt to the distribution of the scores in the

posting list.

�e improvement with this kind of partitioning is apparent from

the example in Figure 1. �e �gure shows a sequence of scores

partitioned in constant-sized blocks and in variable-sized blocks.

We de�ne the error as the sum of the di�erences between each

value and its block’s upper bound, the shaded area in the �gure.

�is example shows that a variable-sized partitioning can produce

a much lower error, e.g., 28 in constant-sized partitioning (with

blocks of length 3) versus 10 in variable-sized partitioning.

Problem de�nition. To give a more formal de�nition, for a par-

titioning of the sequence of scores in a posting list of n postings

let B be the set of its blocks. Each block B ∈ B is a sequence of

consecutive postings in the posting list. We use b = |B| and |B | to
denote the number of blocks of the partition and the number of

postings in B, respectively. �e term-document scores are de�ned

above as st,d ; however, since in the following we will work on

one posting list at a time, we can drop the t , so sd will denote the

sequence of scores for each document d in the posting list.

We de�ne the error of a partitioning B as follows:∑
B∈B

*.
,
|B |max

d ∈B
sd −

∑
d ∈B

sd
+/
-
. (1)

Here for each block of postings we are accounting for the the sum of

its individual posting errors, i.e., the sum of the di�erences between

the block maximum score and the score of the posting.

To simplify the formula above we can notice that the right-hand

side of the subtraction can be taken out of the sum, since the blocks

form a partition of the list, and the resulting term does not depend

on B. �us, minimizing the error is equivalent to minimizing the

following formula, which represents the perimeter of the envelope,

for a given number of blocks b = |B|:∑
B∈B

|B |max

d ∈B
sd . (2)

Our goal is to �nd a block partitioning that minimizes the sum

of block errors among all blocks in the partitioning. Naı̈vely, the

minimum cost partitioning would correspond to blocks containing

only a single posting. Since this solution clearly does not carry out

any bene�t, we �x the number of blocks in the partition to be b. As

we will show in Section 5 minimizing the error can signi�cantly

improve BMW performance over constant-sized blocks.

Existing solutions. �e problem of �nding a partition that mini-

mizes Equation (2) subject to a constraint b on the number of its

blocks can be solved with a standard approach based on dynamic

programming. �e basic idea is to �ll a b ×n matrix M where entry

M[i][j] stores the minimum error to partition the posting list up to

position j with i blocks. �is matrix can be �lled top-down from

le� to right. �e entry M[i][j] is computed by trying to place the

jth posting in the optimal solutions that uses i − 1 blocks. Unfor-

tunately, the time complexity of this solution is Θ(bn2), which is

Θ(n3) since, given that the average block size n/b is small (e.g.,

32–128), thus, the interesting values of b are Θ(n). �is algorithm is

clearly unfeasible because n can easily be in the range of millions.

�is optimization problem is similar in nature to the well-studied

problem of computing optimal histograms (see again Figure 1). �e

complexity of �nding the best histogram with a given number of

bars is the same as above. Several approximate solutions have

been presented. Halim et al. [16] describe several solutions and

introduce an algorithm that has good experimental performance

but no theoretical guarantees. All such solutions are polynomial

either in n or in b. Some have complexity O (nb). Guha et al. [15]

introduce a (1 + ϵ ) approximation with O (n +b3
logn +b2/ϵ ) time.

While these techniques can be useful in cases where b is small, in

our case b = Θ(n), which makes these algorithms unfeasible for

us. Furthermore, the de�nition of the objective function in these

works is di�erent from ours, as it minimizes the variance rather

than the sum of the di�erences.

Our solution. We �rst present a practical and e�cient algorithm

with weaker theoretical guarantees regarding the optimal solution

than what would be expected. Indeed, �xed the required number

of blocks b and an approximation parameter ϵ , with 0 < ϵ < 1,

the algorithm �nds a partition with b ′ ≤ b blocks whose cost is

at most a factor 1 + ϵ larger than the cost of the optimal partition

withb ′ edges. �is algorithm runs inO (n log
1+ϵ

1

ϵ log(Un/b)) time,

where U is the largest cost of any block. �e weakness is due to

the fact that there is no guarantee on how much b ′ is close to the

requested number of blocks b. Even with this theoretical gap, in all

our experiments the algorithm identi�ed a solution with a number

of blocks very close to the desired one. In the last part of the section,

we will �ll this gap by showing how to re�ne the solution to always

identify a 1+ϵ approximated optimal solution with exactly b edges.

�e �rst solution is a variation of the approximate dynamic

programming algorithm introduced by O�aviano and Venturini [23]

to optimize the partitioning of Elias-Fano indexes.

It is convenient to look at the problem as a shortest path problem

over a directed acyclic graph (DAG). �e nodes of the graph corre-

spond to the postings in the list; the edges connect each ordered

pair i < j of nodes, and represent the possible blocks in the partition.

�e cost c (i, j ) associated to the edge is thus (j − i ) maxi≤d<j sd .

In this graph, denoted as G, each path represents a possible

partitioning, and the cost of the path is equal to the cost of the

partitioning as de�ned in (2). �us, our problem reduces to an

instance of constrained shortest path on this graph, that is, �nding

the shortest path with a given number of edges [13, 20].
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We can compute the constrained shortest path with an approach

similar to the one in [1, 13, 20]. �e idea is to reduce the problem

to a standard, unconstrained shortest path by using Lagrangian

relaxation: adding a �xed cost λ ≥ 0 to every edge. We denote the

relaxed graph as Gλ . By varying λ, the shortest path in Gλ will

have a di�erent number of edges: if λ = 0, the solution is the path

of n − 1 edges of length one; at the limit λ = +∞, the solution is

a single edge of length n. It can be shown that, for any given λ, if

the shortest path in Gλ has ` edges, then that path is an optimal

`-constrained shortest path in G . �us, our goal is to �nd the value

of λ that give ` = b edges. However, notice that not every b can be

found this way, but in practice we can get close enough. �us, our

algorithm performs a binary search to �nd the value of λ that gives

a shortest path with b ′ edges, with b ′ close enough to b. Each step

of the binary search requires a shortest-path computation.

Each of these shortest-path computations can be solved inO ( |V |+
|E |), where V are the vertices of Gλ and E the edges; for our prob-

lem, unfortunately, this is Θ(n2), which is still unfeasible. We can

however exploit two properties of our cost function to apply the

algorithm in [23] and obtain a linear-time approximate solution for

a given value of λ. �ese properties are monotonicity and quasi-
subadditivity. �e monotonicity property is stated as follows.

Property 1. (Monotonicity) A function f : V × V 7→ R is said
monotone if for each pair of values i, j ∈ V the following holds:

• f (i, j + 1) ≥ f (i, j ),
• f (i − 1, j ) ≥ f (i, j ).

It is easy to verify that our cost function c (i, j ) satis�es Property 1,

because if a block B is contained in a block B′, then it follows

immediately from the de�nition that the cost of B′ is greater than

the cost of B. Monotonicity allows us to perform a �rst pruning of

Gλ : for any given approximation parameter α ∈ (0, 1], we de�ne

G1

λ as the graph with the same nodes as Gλ , and all the edges (i, j )

of Gλ that satisfy at least one of the following conditions.

(1) �ere exists an integer h such that

c (i, j ) ≤ λ(1 + α )h < c (i, j + 1)

(2) (i, j ) is the last outgoing edge from i .

�e number of edges in G1

λ is n log
1+α (

U
λ ) where U is the maxi-

mum cost of an edge (which is equal to n maxd sd ).

We denote as πGλ the shortest path of the graph Gλ and ex-

tend c to denote the cost of a path. It can be shown that c (πG1

λ
) ≤

(1 + α )c (πGλ ), that is, the optimal solution in G1

λ is a (1 + α ) ap-

proximation of the optimal solution in Gλ ; see [14] for the proof.

�e complexity to �nd the shortest path decreases from O (n2) to

O (n log
1+α (

U
λ )). �is would be already applicable in many prac-

tical scenarios, but it depends on the value U of the maximum

score. We can further re�ne the algorithm in order to decrease

the complexity and drop the dependency on U by adding an extra

approximation function (1 + β ) for any given approximation pa-

rameter β ∈ (0, 1], by leveraging the quasi-subadditivity property.

Property 2. (�asi-subadditivity) A function f : V ×V 7→ R is
said λ-quasi-subadditive if for any i,k and j ∈ V , with 0 ≤ i < l <
j < |V | the following holds:

f (i,k ) + f (k, j ) ≤ f (i, j ) + λ.

It is again immediate to show that c (i, j ) satis�es Property 2:

spli�ing a block at any point can only lower the upper bound in

the two resulting sub-blocks, so the only extra cost is the additional

λ of the new edge.

�is property allows us to prune fromG1

λ all the edges with cost

higher than L = λ + 2λ
β ; we call the resulting graph G2

λ . �e new

graph has O (n log
1+α

1

β ) = Θ(n) edges, thus shortest paths can be

computed in linear time. It can be shown (see [23]) that this pruning

incurs an extra (1 + β ) approximation; the overall approximation

factor is thus (1 + α ) (1 + β ), which is 1 + ϵ for any ϵ ∈ (0, 1] by

appropriately �xing α = β = ϵ
3

.

Clearly it is not feasible to materialize the graph Gλ and prune

it to obtain G2

λ , since the dominating cost would still be the initial

quadratic phase. It is however possible to visit the graphG2

λ without

constructing it explicitly, as described in [23].

By using the above algorithm, every shortest path computation

requires O (n log
1+ϵ

1

ϵ ) = Θ(n) time and linear space.

Since we are binary searching on λ, the number of required

shortest path computations depends on the range of possible values

of λ. It is easy to see that λ ≥ 0. Indeed, the shortest path in G0 has

the largest possible number of edges, n−1 and the smallest possible

cost. We now prove that the shortest path inGλ with λ > Un/(b−1)
has less than b edges, whereU is the largest cost on G . �us, in the

binary search we can restrict our a�ention to integer values of λ
in [0,Un/(b − 1)]. �e proof is as follows. Consider the optimal

path with one edge in G, and let O1 be its cost. By monotonicity,

we know that O1 = U . Let Ob be the cost of the best path with b
edges in G. For any λ, the cost of these two paths in Gλ are O1 + λ
and Ob + bλ. Observe that if λ > Un/b, the former path has a cost

which is smaller than the cost of the la�er. �is means that we do

not need to explore values of λ larger than Un/(b − 1) when we

are looking for a path with b edges. �us, the �rst phase of the

algorithm needs O (log(Un/b)) shortest path computations to �nd

the target value of λ. �us, if we restrict our search to integer values

of λ, the number of shortest path computations is O (log(Un/b)).
We can re�ne the above solution to �nd a provable good approx-

imation of the shortest path with exactly b edges. �e re�nement

uses the result in [13]. �eorem 4.1 in [13] states that, given a DAG

G with integer costs which satisfy the monotonicity property, we

can compute an additive approximation of the constrained shortest

path ofG . More precisely, we can compute a path with b edges such

that its cost is at most Ob +U , where Ob is the cost of an optimal

path with b edges and U is the largest cost on G. �e algorithms

works in two phases. In the �rst phase, it reduces the problem

to a standard, unconstrained shortest path by using Lagrangian

relaxation as we have done in our �rst solution. �us, the �rst

phase binary searches for the value of λ for which the shortest path

on Gλ with the least number of edges has at most b edges, while

the one with the most edges has at least b edges. If one of these

two paths has exactly b edges, this is guaranteed to be an optimal

solution and we are done. Otherwise, we start the second phase

of the algorithm. �e second phase is called path-swapping and

its goal is to combine these two paths to �nd a path with b edges

whose cost is worse than the optimal one by at most an additive

term A, which equals the largest cost in the graph. We refer to [1]

and [13] for more details.
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We cannot immediately apply the above optimization algorithm

because of two important issues. In the following we will introduce

and solve both of them.

�e �rst issue is that the above optimization algorithm assumes

that the costs in G are integers, while in our case are not. �e

idea is to obtain a new graph with integer costs by rescaling and

rounding the original costs of G. More precisely, we can obtain

a new graph by replacing any cost c (i, j ) with dc (i, j )/δe, where

δ ∈ (0, 1] is an approximation parameter. We can prove that this

operation slightly a�ects the cost of the optimal path. Indeed, let

Ob the cost of the shortest path with b edges in G, the shortest

path on the new graph as cost Õb which is Ob ≤ Õb ≤ Ob + δb.

Due to space limitations, we defer the proof of this inequality to

the journal version of the paper. Even if in general we cannot

bound the additive approximation δb in terms of Ob , in practice

the approximation is negligible because Ob is much larger that δb.

Notice that this approximation increases U to
U
δ .

�e second issue to address is the fact that additive approxima-

tion term A in the result of [13] is the largest edge cost U . In our

problem this additive approximation term is the cost of the edge

from 1 to n, which equals the cost of the worst possible path. �is

means that the obtained approximation would be trivial. However,

we observe that, due to the approach of the previous paragraph,

the largest cost on the approximated graph G2

λ is L = λ + 2λ
β and

we know that λ ≤ Un/b. �us, the additive approximation term A

is O (Un
bβ ), which is negligible in practice.

�us, we obtained the following theorem.

Theorem 3.1. Given a sequence of scores S[1,n] and a �xed num-
ber of blocksb, we can compute a partition of S intob blocks whose cost
is at most (1 + ϵ )Ob +O (Un

bϵ ) + δb in O (n log
1+ϵ

1

ϵ log( Un
bδϵ )) time

and linear space, where Ob is the cost of the optimal partition with
b blocks,U =

∑n
i=1

S[i], and ϵ,δ ∈ (0, 1] are the two approximation
parameters.

4 REPRESENTING THE UPPER BOUNDS
BlockMaxWAND is required to store additional information about

the block upper bounds. �is additional information must be stored

together with the traditional inverted index data structures, and

while these upper bounds can improve the time e�ciency of query

processing, they introduce a serious space overhead problem.

�e additional information required by BlockMaxWAND can be

seen as two aligned sequences: the sequence of block boundaries,

that is, the largest docid in each block, and the score upper bound

for each block.

In the original implementation, the sequences are stored un-

compressed, using constant-width encodings (for example, 32-bit

integers for the boundaries and 32-bit �oats for the upper bounds),

and are usually interleaved to favor cache locality. We can however

use more e�cient encodings to reduce the space overhead.

First, we observe that the sequence of block boundaries is mono-

tonic, so it can be e�ciently represented with Elias-Fano. In ad-

dition to saving space, Elias-Fano provides an e�cient NextGEQ
operation that can be used to quickly locate the block containing

the current docid at query execution time.

Second, as far as the upper bounds are concerned, we can reduce

space use by approximating their value. �e only requirement to

preserve the correctness of the algorithm is that each approximate

value is an upper bound for all the scores in its block. �us, we

can use the following quantization. First, we partition the score

space into �xed size buckets. Any score is represented with the

identi�er of its bucket. Let us assume that the score space is [0,U ]

and that we partition it into w buckets. �en, instead of storing a

block upper bound with value s ∈ [0,U ], we store the identi�er i

such that
iU
w < s ≤

(i+1)U
w . At query time, the actual score s will

be approximated with the largest possible value in its bucket, i.e.,

(i+1)U
w . Clearly, the representation of any score requires blogw + 1c

bits, a large space saving with respect to the 32 bits of the �oat

representation. Obviously, the value of w can be chosen to trade

o� the space usage and the quality of the approximation.

A simple optimization to speed up access is to interleave the two

sequences, by modifying of the Elias-Fano data structure. Elias-
Fano stores a monotonic sequence by spli�ing each value into its `

low bits, and the remaining high bits. �e value of ` a constant for

the sequence. While the high bits are encoded with variable-length,

the low bits are encoded verbatim in exactly ` bits per element,

thus the low bits of the i-th element are at the position i` of the low

bitvector. We can then interleave the low bits and the quantized

score by using a bitvector of (` +w )-bit entries, so that when the

block is located, its quantized upper bound is already in cache.

5 EXPERIMENTAL RESULTS
In this section we analyze the performance of VBMW with an

extensive experimental evaluation in a realistic and reproducible

se�ing, using state-of-the-art baselines, standard benchmark text

collections, and a large query log.

Testing details. All the algorithms are implemented in C++11 and

compiled with GCC 5.4.0 with the highest optimization se�ings.

�e tests are performed on a machine with 8 Intel Core i7-4770K

Haswell cores clocked at 3.50GHz, with 32GiB RAM, running Linux

4.4.0. �e indexes are saved to disk a�er construction, and memory-

mapped to be queried, so that there are no hidden space costs

due to loading of additional data structures in memory. Before

timing the queries we ensure that the required posting lists are fully

loaded in memory. All timings are measured taking the results with

minimum value of �ve independent runs. All times are reported in

milliseconds.

�e source code is available at h�ps://github.com/rossanoventurini/

Variable-BMW for the reader interested in further implementation

details or in replicating the experiments.

Datasets. We performed our experiments on the following stan-

dard datasets.

• ClueWeb09 is the ClueWeb 2009 TREC Category B collec-

tion, consisting of 50 million English web pages crawled

between January and February 2009.

• Gov2 is the TREC 2004 Terabyte Track test collection, con-

sisting of 25 million .gov sites crawled in early 2004; the

documents are truncated to 256 kB.

For each document in the collection the body text was extracted

using Apache Tika
1
, the words lowercased and stemmed using the

1
h�p://tika.apache.org

https://github.com/rossanoventurini/Variable-BMW
https://github.com/rossanoventurini/Variable-BMW
http://tika.apache.org
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Table 1: Basic statistics for the test collections

ClueWeb09 Gov2

Documents 50,131,015 24,622,347

Terms 92,094,694 35,636,425

Postings 15,857,983,641 5,742,630,292

Porter2 stemmer; no stopwords were removed. �e docids were

assigned according to the lexicographic order of their URLs [27].

Table 1 reports the basic statistics for the two collections. If not

di�erently speci�ed, the inverted index is compressed by using

partitioned Elias-Fano (PEF) [23] in the ds2i library
2
.

�eries. To evaluate the speed of query processing we use Trec05
and Trec06 E�ciency Track topics, drawing only queries whose

terms are all in the collection dictionary and having more than 128

postings. �ese queries are, respectively, the 90% and 96% of the

total Trec05 and Trec06 queries for the Gov2 collection and the 96%

and 98% of the total Trec05 and Trec06 queries for the ClueWeb09
collection. From those sets of queries we randomly select 1 000

queries for each length.

Processing strategies. To test the performance on query strategies

that make use of the docids and the occurrence frequencies we per-

form BM25 top 10 queries using 5 di�erent algorithms: RankedOR,

which scores the results of a disjunctive query, WAND [4], MaxS-
core [30], BlockMaxWAND (BMW) [10], and the proposed Variable
BMW (VBMW) in its uncompressed and compressed variants.

We use BMWx to indicate that the �xed block size in BMW is x
postings, while we use VBMWx to indicate that the average block

size in VBMW is x postings. �e compressed version of VBMW as

described in Section 4 is denoted as C-VBMWx.

Validating our BMW implementation. We implemented our ver-

sion of BMW because the source code of the original implementa-

tion was not available. To test the validity of our implementation we

compared its average query time with the ones reported in [10]. We

replicated their original se�ing by using the same dataset (Gov2),

by compressing postings with the same algorithm (PForDelta), by

using queries from the same collections (Trec05 and Trec06), and

by using BMW64. However, since we are using a di�erent faster

machine, we cannot directly compare query times, but, instead, we

compare the improving factors with respect to RankedOR, which

is an easy-to-implement baseline.

Table 2 shows the query times reported in the original paper

(top) and the ones obtained with our implementation (bo�om).

Results show that the two implementations are comparable, with

ours which is generally faster. For example, it is faster by a factor

larger than 2.4 on queries with more than three terms in Trec06.

�e e�ect of the block size in BMW. Although the most commonly

used block sizes for BMW are 64 and 128, a more careful exper-

imental evaluation shows that the best performance in terms of

query time is obtained with a block size of 40 postings.

Table 3 shows the average query time of BMW with respect to

Trec05 and Trec06 on both Gov2 and ClueWeb09, by varying the

2
h�ps://github.com/ot/ds2i

Table 2: �ery times (in ms) of RankedOR and BMW64 on
Gov2with queries in Trec05 and Trec06 as reported by Ding
and Suel [10] (top) and the ones obtained with our imple-
mentation (bottom), for di�erent query lengths.

Number of query terms

2 3 4 5 6+

Trec05 (from [10])

RankedOR 62.1 (x17.7) 238.9 (x18.8) 515.2 (x20.4) 778.3 (x25.9) 1,501.4 (x14.4)

BMW64 3.5 12.7 25.2 30.0 104.0

Trec06 (from [10])

RankedOR 60.0 (x14.7) 159.2 (x13.8) 261.4 (x7.8) 376.0 (x6.9) 646.4 (x5.7)

BMW64 4.1 11.5 33.6 54.5 114.2

Trec05

RankedOR 15.5 (x13.2) 51.3 (x17.3) 100.3 (x22.6) 158.0 (x22.7) 275.1 (x17.3)

BMW64 1.2 3.0 4.5 7.0 15.9

Trec06

RankedOR 15.5 (x14.7) 57.6 (x16.9) 117.6 (x19.7) 178.0 (x18.5) 311.2 (x13.8)

BMW64 1.1 3.4 6.0 9.6 22.5

block size. We select the block size in the set {32, 40, 48, 64, 96, 128}.

It is clear that in all cases, the best average query time is achieved

with blocks size 40. BMW40 is 10% faster, on average, thanBMW128.

Table 3 also reports the space usage of the (uncompressed) ad-

ditional information stored by BMW, namely the largest score in

the block (as �oat) and the last posting in the block (as unsigned

int). Posting lists with fewer postings than the block size do not

store any additional information. �e size of the inverted index of

the Gov2 and ClueWeb09 collections (compressed with PEF) is 4.32

GiB and 14.84 GiB respectively. �us, the space of the additional

information required by BMW is not negligible, since it ranges be-

tween 15% and 42% of the compressed inverted index space on both

Gov2 and ClueWeb09. As we will see later, this space usage can be

reduced signi�cantly by compressing the additional information.

�e e�ect of the block size in VBMW. Now, we proceed by ana-

lyzing the behavior of VBMW. Instead of adopting the more so-

phisticated approximation approach detailed in Section 3, we use

the simpler optimization algorithm which has no theoretical guar-

antees on the �nal number of blocks. �us, we cannot choose an

exact block size for our partitioning but we binary search for the λ
in the parameter space that gives an average block size close to the

values in {32, 40, 48, 64, 96, 128}.

Table 4 reports the average block sizes and score errors for dif-

ferent block sizes w.r.t. BMW and VBMW on Gov2 and ClueWeb09,

and optimal values for the Lagrangian relaxation parameter λ. Note

that for BMW, the average block size is not perfectly identical to

the desired block size due to the length of the last block in the

posting lists, which may be smaller than the desired block size.

Our optimization algorithm is able to �nd an average block size

for VBMW within 3% of the average block size for BMW. �us,

the weaker optimization algorithm of Section 3 su�ces in practice

to obtain the desired average block sizes. More importantly, the

https://github.com/ot/ds2i
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Table 3: Space usage of the additional data required byBMW
and average query times with queries in Trec05 and Trec06
on Gov2 and ClueWeb09, by varying the block size.

Block size

32 40 48 64 96 128

Additional space (GiB)

Gov2 1.83 1.55 1.38 1.15 0.92 0.85
ClueWeb09 5.04 4.14 3.62 3.04 2.40 2.24

�ery time (ms) on Trec05

Gov2 3.6 3.6 3.7 3.8 3.9 4.2

ClueWeb09 12.8 12.6 12.6 12.8 13.3 13.9

�ery time (ms) on Trec06

Gov2 8.3 8.2 8.3 8.5 8.9 9.2

ClueWeb09 26.4 26.3 26.5 27.0 28.0 29.4

Table 4: Average block sizes and score errors for di�erent
block sizes w.r.t. BMW andVBMW onGov2 andClueWeb09,
and optimal values for the Lagrangian relaxation parameter.

Block Size

32 40 48 64 96 128

Gov2

Average Block Size
BMW 31.94 39.90 47.87 63.74 95.35 127.14

VBMW 31.32 39.63 47.09 63.60 98.40 126.30

Average Score Error
BMW 1.47 1.55 1.61 1.70 1.83 1.92

VBMW 0.82 0.91 0.98 1.09 1.26 1.35

λ VBMW 12.0 15.2 18.0 24.0 35.1 45.9

ClueWeb09

Average Block Size
BMW 31.96 39.94 47.91 63.83 95.65 127.29

VBMW 30.24 39.54 48.03 63.29 97.43 127.72

Average Score Error
BMW 1.94 2.05 2.15 2.29 2.49 2.63

VBMW 1.20 1.34 1.45 1.60 1.83 1.98

λ VBMW 16.0 21.0 25.5 33.4 50.3 64.5

average score error for VBMW is sensibly smaller than the average

score error for BMW, with a reduction ranging from 40% for small

blocks up to 25% for large blocks. �is con�rms the importance of

partitioning the posting lists with variable-sized blocks.

In Table 5 we can see that VBMW reaches the best average query

times with approximatively 32 − 40 elements per block, similar to

the best block size for BMW reported in Table 3, i.e., 40 postings

per block. As shown in Figure 2, the trade-o� in choosing this block

size w.r.t. average query time is that we use more space to store

block information, as reported in Table 3.

�e e�ect of compression in VBMW. Figure 2 shows how the

choice of w a�ects both query time and space usage of C-VBMW
when the average number of blocks is �xed to 40 elements. We

�xed the number of buckets w to quantize the scores to the powers

Table 5: Average query times of VBMW with queries in
Trec05 and Trec06 on Gov2 and ClueWeb09, by varying the
block size.

Block size

32 40 48 64 96 128

�ery time (ms) on Trec05

Gov2 2.1 2.1 2.1 2.2 2.5 2.8

ClueWeb09 7.2 7.2 7.4 8.1 9.7 11.0

�ery time (ms) on Trec06

Gov2 4.6 4.7 4.8 5.3 6.1 6.9

ClueWeb09 14.7 15.2 16.1 17.8 21.2 23.7

of two from 32 to 512 and we reported the query time and the

space of the additional information on both datasets with both set

of queries. For comparison, we also plot the results of the plain

version of VBMW by varying the average size of the blocks.

�e �rst conclusion is that the compression approach is very ef-

fective. Indeed, C-VBMW improves space usage by roughly a factor

2 with respect to VBMW40. We also notice that the compression

approach is more e�ective than simply increasing the block size

in the uncompressed VBMW. Indeed, for example, C-VBMW with

w = 32 uses almost the same space as VBMW128 but is faster by

20% − 40%.

�e second conclusion is that compression does not decrease

query time which actually sometimes even improves. For example,

C-VBMW withw = 512 andw = 256 is faster that its uncompressed

version (VBMW40) on both datasets with Trec05. �is e�ect may

be the results to a be�er cache usage resulting from the smaller

size of additional information in C-VBMW.

We observe that there are small di�erences (less than 10%) in

e�ciency between the di�erent values of w . �us, for the next

experiments we will �x w to 512 to obtain the best time e�ciency.

Overall comparison. To carefully evaluate the performance of

C-VBMW w.r.t. other processing strategies, we measured the query

times of di�erent query processing algorithms for di�erent query

lengths, from 2 terms queries to more than 5 terms queries, as well

as the overall average processing times and the space use of any

required additional data structure with respect the whole inverted

indexes represented with PEF.

In Table 6, next to each timing is reported in parenthesis the

relative speedup of C-VBMW40 with respect to this strategy. Ta-

ble 6 also reports, in GiB, the additional space usage required by

the di�erent query processing strategies. Next to each size mea-

sure is reported in parenthesis the relative percentage against the

data structures used to compress posting lists storing docids and

frequencies only, as used by RankedOR.

Not very surprisingly, RankedOR is always at least 34 times

slower than C-VBMW40, while both MaxScore and WAND are from

1.4 to 11 times slower than C-VBMW40. �e maximum speedup of

C-VBMW40 is achieved with queries of two terms where it ranges

from 6.5 to 11. Space usage of MaxScore and WAND plainly store

the score upper bounds for each term using the 4% − 5% of the

inverted index.
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Figure 2: Space consumed vs. average query times of VBMW with di�erent block sizes and C-VBMW with block size 40 by
varyingw for 32 to 512 with queries in Trec05 and Trec06 on Gov2 and ClueWeb09.

All block-based strategies report a minimal variance of query

times among di�erent query lengths. For both the most common

block size (128 postings per block) and the most e�cient one (40

postings per block), VBMW strategies process queries faster than

BMW strategies, with the same space occupancies. �e correspond-

ing compressed versions, C-VBMW128 and C-VBMW40, sensibly

reduce the space occupancies (by 6% and 17% respectively) but while

C-VBMW128 never processes queries faster than the correspond-

ing uncompressed VBMW128, C-VBMW40 does not show relevant

performance losses with respect to VBMW128, but exhibits some

cache-dependent bene�ts for short queries.

With respect to the current state-of-the-art processing strategy

BMW128, our best strategy in terms of query times is C-VBMW40,

able to improve the average query time by a factor of roughly 2×,

e�ectively halving the query processing times for all query lengths,

with a relative 3%− 5% gain in space occupancy. If space occupancy

is the main concern, our best strategy isC-VBMW128, able to reduce

the space by a relative 30% against BMW128, while still boosting

the query times by a factor of roughly 1.5×.

6 CONCLUSIONS
We introduced Variable BMW, a new query processing strategy

built on top of BlockMaxWAND. Our strategy uses variable-sized

blocks, rather than constant-sized. We formulated the problem of

partitioning the posting lists of a inverted index into variable-sized

blocks to minimize the average block error, subject to a constraint

on the number of blocks, and described an e�cient algorithm to �nd

an approximate solution, with provable approximation guarantees.

We also introduced a compressed data structure to represent the

additional block information. Variable BMW signi�cantly improves

the query processing times, by a factor of roughly 2× w.r.t. the best

state-of-the-art competitor. Our new compression scheme for the

block data structures, compressing the block boundary docids with

Elias-Fano and quantizing the block max score, provides a maximum

reduction of space usage w.r.t. the uncompressed data structures of

roughly 50%, while incurring only a small speed degradation, no

more than 10% with respect to its uncompressed counterpart.

Future work will focus on exploring the di�erent space-time

trade-o�s that can be obtained by varying the quantization scheme

exploited in the compression of the additional data structures.
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