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Abstract

Dimension IMportance Estimation (DIME) is a recently proposed
technique to enhance ranking effectiveness of dense retrieval mod-
els by pruning irrelevant embedding dimensions through Pseudo
Relevance Feedback (PRF DIME) or exploiting dense representa-
tions of Large Language Model-generated answers (LLM DIME).
Despite strong empirical performance, its theoretical foundations
and generalizability remain open questions.

In this paper, we propose four key contributions. First, we pro-
vide a rigorous theoretical analysis of DIME, framing it as a denois-
ing mechanism that mitigates embedding noise while preserving
the salient information. Second, we conduct a comprehensive re-
producibility study, confirming previously reported gains for both
PRF DIME and LLM DIME. Third, we extend the evaluations of
PRF DIME by applying it to a broader set of embedding models
with distinct characteristics, such as matryoshka embeddings, co-
sine similarity-optimized models, and architectures that produce
high-dimensional representations, while also testing it on diverse
retrieval datasets. For LLM DIME, we expand the analysis across
a range of LLMs, comparing high-parameter proprietary models
with cheaper open-source alternatives. Finally, we refine DIME by
introducing an attention-inspired PRF mechanism and propose to
leverage dimension importance as a reranking technique.
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1 Introduction

Embedding-based neural retrieval models now lie at the heart of
modern Information Retrieval (IR), mapping queries and docu-
ments into high-dimensional vector spaces for contextual matching
[20, 29]. Unlike older sparse methods such as BM25 [30] or even cur-
rent learned sparse models [5, 11, 19, 21-23, 45], dense embeddings
deliver remarkable improvements by capturing higher-level seman-
tic similarities. However, the move to high-dimensional embedding
spaces introduces new challenges. Not all coordinates contribute
equally to capturing relevance signals, and certain dimensions can
even hurt retrieval accuracy by introducing noise.

In response, recent work has explored dimension pruning to
mitigate these issues and to focus on the most salient coordinates
for a particular query. One such approach is the Dimension IMpor-
tance Estimation (DIME) framework [10], which proposes selecting
a query-dependent subspace in which only the most relevant dimen-
sions are retained. Empirically, DIME has shown to significantly
improve ranking effectiveness across multiple benchmarks.

Despite these promising results, some key research questions
remain open. First, while DIME has demonstrated strong empirical
performance, its mathematical underpinnings remain unclear. A
rigorous theoretical analysis of DIME would clarify how dimension
selection balances discarding noise and preserving information.
By casting dimension pruning in a denoising framework, we could
better understand the geometry of subspace selection and why
removing certain coordinates boosts retrieval performance (RQ1).
Second, reproducibility of DIME has yet to be fully established. As
with other neural IR methods, small changes to hyperparameters
or evaluation procedures may yield divergent findings [2] (RQ2).
Third, DIME’s generalizability to newly emerging embedding mod-
els has not been systematically investigated. Modern IR applica-
tions involve both extremely large-scale embeddings (potentially
exacerbating dimensionality issues) and compact, efficiency-driven
encoders designed for real-world deployment. Whether DIME re-
mains effective across different datasets, domains, and embedding
architectures is an open question (RQ3). Finally, the potential for
refining DIME to further enhance its applicability and performance
remains unexplored (RQ4).

In this paper, we address these open questions through a com-
bination of theoretical insights, reproducibility analysis, general-
ization studies, and methodological refinements. To improve read-
ability, we structure the remainder of this work to directly align
with these research questions. Section 2 provides an overview of
key concepts related to dense retrieval, pseudo-relevance feedback
(PRF), large language models, and the DIME framework. Section 3
addresses RQ1 by establishing a formal foundation for dimension


https://github.com/pinecone-io/unveiling-dime
https://doi.org/10.1145/3726302.3730318
https://doi.org/10.1145/3726302.3730318

SIGIR °25, July 13-18, 2025, Padua, Italy.

pruning, framing it as a denoising mechanism to explain its ef-
fectiveness. Section 4 examines RQ2, presenting a comprehensive
reproducibility study to assess the robustness of DIME’s empirical
improvements. Section 5 investigates RQ3, evaluating the general-
izability of DIME across different retrieval scenarios, embedding
models, and datasets. Finally, Section 6 explores RQ4, proposing
two refinements: (i) a weighted averaging technique that improves
retrieval effectiveness while making the model more robust to hy-
perparameter selection, and (ii) a reranking strategy that leverages
DIME to refine ranking results, enhancing applicability. Section 7
summarizes our findings and discusses future directions.

2 Background and Preliminaries

This section provides the necessary background for understanding
our work. We begin with an overview of dense vector retrieval,
followed by a recap of pseudo-relevance feedback (PRF) approaches.
We then summarize current developments in LLMs and, finally,
introduce the Dimension IMportance Estimation (DIME) paradigm.
Dense Vector Retrieval. Over the past decade, the paradigm of
vector retrieval has rapidly become a dominant approach in IR, pro-
pelled by advances in neural networks and LLMs. Traditional IR
methods such as BM25 rely primarily on lexical overlap, treating
each unique token as a dimension in a large sparse vector space.
While these methods are robust and interpretable, they can be lim-
ited when query and document vocabulary differs (e.g., synonyms or
paraphrases). By contrast, dense embedding models project queries
and documents into a shared, lower-dimensional representation
space [8]. Each textual input is mapped to a dense vector, typically
of a few hundred dimensions (e.g., 768), by a neural encoder. Re-
trieval then proceeds by measuring similarity between the query
and document embeddings. Common retrieval metrics for dense
representations include Inner Product (IP) and Cosine Similarity.

Normalization. In many practical systems, normalizing all embed-
dings to unit length (i.e., [|x||2 = 1) is performed so that an inner
product between normalized vectors directly corresponds to their co-
sine similarity. Such normalization can simplify the search pipeline,
since one only needs to store unit vectors and use a standard dot-
product index. Moreover, it ensures that each embedding’s mag-
nitude does not unfairly dominate the distance measure, focusing
instead on the directional alignment in the latent space.

Matryoshka Embeddings. Traditional embedding models produce
fixed-size vector representations, often without consideration for
task-specific requirements or scalability. Matryoshka Representation
Learning [17] addresses this limitation by enabling embeddings to
remain effective even when truncated to smaller dimensions. This
is achieved by applying the same training objective to both the full
embedding and its truncated portions.

Pseudo-Relevance Feedback. PRF is a classical technique in IR
that refines a query representation using the top-ranked documents
initially retrieved for that query. The assumption is that these top
documents are likely to be relevant, even if they are not manu-
ally labeled. Rocchio [31] introduced a pioneering vector-space
method for iteratively adjusting the query based on these feedback
documents, while later work like RM3 used statistical term-level ex-
pansions. In dense retrieval, PRF is often interpreted as shifting the
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query embedding toward the centroid of its top-k retrieved embed-
dings, thereby injecting relevance signals to improve subsequent
ranking.

Large Language Models (LLMs). With the advent of the Trans-
former architecture [35], language modeling shifted from bidirec-
tional encoders such as BERT [8] to autoregressive causal decoders
like GPT-2 and GPT-3 [6, 26, 27]. These generative models allow for
flexible text generation at large scales and now include both closed-
source variants and open-source models suitable for production.

Empirical work on scaling laws [16, 28] shows that increasing
model size typically boosts performance. Proprietary models such
as GPT-4 and GPT-4o [1] lead many benchmarks, but open-source
LLMs like Llama [9, 33, 34] and Qwen [3, 43, 44] can closely com-
pete, especially with specialized training or domain adaptation.
Moreover, recent attempts to optimize inference-time compute via
reinforcement learning have led to the OpenAlI 01/03 series [15] and
DeepSeek R1 [12], each designed to improve step-by-step reasoning,
resulting in an overall higher-quality output.

Despite strong performance, large models often incur high infer-

ence costs. GPT-4 may require tens of seconds to generate a com-
plex answer, making it challenging in real-time retrieval scenarios.
Hence, while we demonstrate how GPT-4 can produce synthetic
documents for Dimension Importance Estimation (Section 2), we also
investigate smaller or more cost-effective LLMs (Qwen 2.5, Llama
3.x, DeepSeek R1) that offer faster inference.
Dimension Importance Estimators (DIME). Although dense
retrieval brings clear advantages, recent evidence shows that not all
dimensions in a latent space are equally useful for every query [10].
A fixed-size vector (e.g., dimension 768) can encode many linguistic
or conceptual features, but some coordinates may be irrelevant—or
even detrimental—for a specific information need. This reality is
further exacerbated when embeddings exhibit hierarchical (Ma-
tryoshka) structures or when the vectors vary widely in norm.

Key Concept. DIME assigns an importance score u4(i) to each co-
ordinate i € {1,...,d} of the query embedding q € R?. Sorting
dimensions by ug4(i) and retaining the top-k effectively projects the
query onto a query-adaptive subspace. Empirical findings indicate
that dimension filtering can substantially improve retrieval metrics
while requiring neither re-training nor re-indexing [10].

Magnitude DIME. One of the simplest DIMEs uses only the absolute
value of each query coordinate:

ugmg(i) = |q,~|.

This method assumes larger components in the query embedding
carry greater importance. Though computationally cheap, it over-
looks crucial “small” coordinates that are semantically relevant [10].

PRF DIME. Drawing on the PRF concept (Section 2), suppose dj, . . ., dkf
are the top-k (pseudo-relevant) documents retrieved for q. Their
centroid is
k
1 S
=

The PRF DIME then scores each dimension by

PRF@ky .
ug () = qi - pi



Unveiling DIME

i.e., coordinates of q that align strongly with the centroid of pseudo-
relevant embeddings are prioritized.

LLM DIME. Finally, LLM DIME utilizes a generative model to
produce a synthetic passage a € R4:

(1) Prompt an LLM (e.g., GPT-4) with query g,
(2) Encode the generated text into a,
(3) Score each dimension via uCLILM(i) =qi - aj.

This approach can be powerful in scenarios where top-retrieved
documents are suboptimal or where we can afford the cost of LLM
calls. It can yield strong improvements in zero-shot or domain-
mismatch tasks, though it may suffer from high inference latency
if large LLMs are used at scale.

Recent work [7] has also shown the importance of negative
feedback in the dimension importance estimation.

3 DIME from a Denoising Perspective

Dimension IMportance Estimation (DIME) works by selectively
pruning embedding coordinates deemed irrelevant to a query, thereby
focusing on dimensions most indicative of relevance. In this section,
we argue that this process can be interpreted as a form of denoising,
where dimension filtering acts to suppress random fluctuations in
embedding vectors while preserving the core semantic “signal” that
corresponds to the user’s information need.

3.1 Signal vs. Noise in Top-Ranked Documents

The term information need is common in information science and
describes a person’s or a group’s wish to find and get information
that meets a conscious or unconscious requirement. Hjorland [40]
explains that it is closely linked to relevance: if something is im-
portant for someone to complete a specific task, we can say that
person needs that information.

Let {d(i)}f.“:1 c R" be the set of top-k retrieved documents
(in embedding space). We model each d® as a sum of a signal
component plus a noise term:

40 = gg 4 ),

where

o s € R" is the information need (the signal) common to the
top-k retrieved documents,

e a) > 0 reflects how strongly document i expresses that
information need , and

e €D € R" s the noise component specific to document i.

Furthermore, following the usual convention, a subscript j to a vec-
tor represents the j-th component of that vector, thus component-
wise we write
() _ (Dg. 4 (D
d ;= als; +€ i
We assume
E[e] = o, Var(e](.i)) = %,
and that e](.i) is independent across indices i, j. The scalar a® and
the vector s are unobserved but serve to illustrate that the top-k

embeddings share a common “core signal” plus random noise e(?).
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Signal Concentration. A standard way to aggregate the top-k
embeddings is via a weighted centroid:

k k
c = Z;w(i) d)  where Z;w(i) = 1.
i= i=

Writing c; as the j-th dimension of ¢, we have

k k k
cj = le w( [a(i)sj + e;l)] =sj Z; wWg® 4 Zl: w(® ej(.l) . (1)
1= = i=
N—
mj

. . . . . i) _ 1
Thus, in the special case of uniform weighting, wil) = %

2

k
i o
nj = Zej(.l), El[n;j] = 0, Var(n;) = -
i=1

I

Viewing Relevance as Dot Product. Let q € R" be a query
embedding and r(-) be our relevance scoring function that we
assume to be computed by simple dot-product, we have

r(q’ dm) =g-d" = Zh: qfdj('w - Zh: (qj“(i)Sj + qj‘%('i))

= =1

The contribution of the j-th term of the query to r(-) is given by:

r (qj,dj(i)) = qja(i)sj- + qjej(.i)

Likewise, the dot product with the centroid becomes

h h k h
rlge) = i = ) gy wPaPsi+ Y gin
j=1 =1 = j=1

Optimal Hard Thresholding (Masking Dimensions). In DIME,
a binary mask m = (mq,my,...,my) € {0, l}h is learned to selec-
tively turn off dimensions deemed less relevant to q. Concretely,
mj = 0 means we zero out dimension j in subsequent dot-product
similarity computations; m; = 1 means the dimension is retained.

A natural (though idealized) objective is to keep as much of the
signal as possible while suppressing noise. For instance, one might
minimize

h h h
min} ijqj?j —quSj +/1ijqu]~ . (2
me{0,1}” = = =

where

e 5; is an estimate of the true signal s; (e.g., ¢; from the cen-
troid),

e ) > 0 balances the trade-off between the two terms,

e mj € {0,1} enforces a hard-threshold selection of dimen-
sions.

Minimizing Eq. 2 encourages the algorithm to keep dimensions that
best align with q (where g; s; is large) and filter out dimensions
that are mostly noisy (large variance n; with little or negative
contribution to the query).
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REMARK 1. The actual, true, signal s cannot be directly observed.
In practice, one may replacesj with cj, the j-th component of the
centroid, or use another form of aggregation (e.g., a average over the
top-k documents). This makes it possible to implement the objective
in Eq. 2 without direct access to the true signal vector.

Signal Estimation Since s; is unobserved, the query-centroid score
is used as an estimator:

qjsj = 4j¢j = rj(gj.¢))
Dimension Importance Estimation. The original DIME paper
uses the following heuristic to select the m mask.
" = 1 if gjc; is among top-I values
/ 0 otherwise

where 0 < | < h is an hyperparameter.

Bounding Noise via Chebyshev’s Inequality. We use the Cheby-
shev inequality to provide a probabilistic guarantee for the deviation
of a random variable from its mean, without requiring any specific
distribution (e.g., Gaussian). For the noise term n; = % Zi.‘:l ej(.l),
which has mean zero and variance Var(r;) = %, Chebyshev’s

inequality states:

= ¢ antap) <2 (im0 ) <

where t > 0 is a scaling factor. This inequality bounds the probabil-
ity that the noise term 7; exceeds a threshold proportional to its

standard deviation. For example, setting ¢ = Vk yields:

P(|I7j| > O') <

| =

This means that with probability at least 1 — %, the noise term 7; is
bounded by ;. As k (the number of pseudo-relevant documents)
increases, this bound becomes tighter, ensuring that n; remains
small. With error bound:

2
[o )
Iri(gj.cj) —qjsjl = lgjn;il < lg;jl " (w.h.p. via Chebyshev)

3.2 Improved Weighted Average

The original DIME approach aggregates the top-k document em-
beddings by a simple (uniform) average, which gives an effective
signal strength of

k
_ 1 i
Quniform = E Z D!(l).
i=1

In contrast, our improved approach uses a weighted average:
k
Oweighted = Z wd) a(l),
i=1

where the weights w(!) € [0,1] are computed from the query-
document similarity scores. For example, we may set

k . zi/T
L cr(z)(’) - ke—
i=1 Z[:l eze/T

w =@ | 7= {r(g.d")| )

Cesare Campagnano, Antonio Mallia, and Fabrizio Silvestri

where ¢ is the softmax function with a temperature parameter
7 > 0 that controls the sharpness of the weight distribution. Under
the assumption that documents with higher relevance scores tend
to exhibit a stronger expression of the core information need (i.e.,
larger o)), it is reasonable to expect that

dweighted > Quniform»
thereby emphasizing the more informative documents in the ag-
gregated signal.
Noise Analysis of the Weighted Average
Following Eq. 1, the aggregated noise term for the weighted centroid

becomes
k
Nw,j = Z w(® ej(.l)_
i=1

Because the weights w(®) depend on the document scores (and
hence potentially on the noise), we use the law of total expectation
to verify that the weighted noise remains unbiased. Specifically,

k

§runp| S
i=1

i=1

E[’?w,j] =E

E [E [w(i) e](.i) | w(i)” (by law of total expectation)

2 [w e [g7 1]

M- I I

1l
-

E [W(i) .0] =0. (since E[e](-i) | w(i)] =0)

Thus, even if w(@ and e(Ai) are dependent, the expected value of

the aggregated noise is zero, and the variance is

k 2
Var(n,j) = o? Z (w(i)) .

i=1
Signal-to-Noise Ratio comparison Via Chebyshev’s inequality,
the error bound for the uniform and weighted averages are

) k
o S\ 2
lgjnjl < Iqu\/? lginw,;jl < lq;l 02; (w®)".

We can define the per-dimension SNR as:

|qj Sj| Qyniform |qj 5j| U_fweighted

o/ Vk ’ U\IZle (W(i))z.

Even if the weighted average introduces a slightly larger noise vari-

SNRyniform = SNRweighted =

. )\ 2 . . .
ance (since Zif:l (w®)* > \/LI?) the improvement in the effective
signal Gyeighted Often more than compensates. In particular, if

&weighted

Z{F:l (W(i))z

> Oyniform \/E

then we obtain

SN Rweighted > SNRuniform-
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For instance, let’s assume that the signal strength is proportional
to the weight (as it is, in turn, proportional to the score), i.e.,

aD =cw®  withe > 0.
Then,
_ C _ . 2
Quniform = s Qweighted = € Z (W(l)) >
i=1

since Zle w() = 1. The SNR condition then reduces to
2
¢ 2?:1 (W(l))

Zi’czl (W(i))z
This inequality is strict whenever the weights are not uniformly
distributed—that is, when the aggregation concentrates more on
the top documents. To ensure this, we use a low 7 (temperature) in
the softmax (Eq. 3), in fact, as 7 decreases, the weight distribution
becomes more concentrated, which can further improve the SNR if
the top documents are significantly more relevant.

>

%

4 DIME reproduction

We begin by reproducing the core results of DIME, specifically
focusing on two variants: PRF DIME and LLM DIME. To ensure
fidelity to the original study, we adopt the same datasets, models,
parameters, and overall configuration described by the original au-
thors. These details—along with the precise experimental setup-are
presented in the following section. By closely mirroring the original
design, the aim is to validate our implementation and confirm that
the reproduced results align with those initially reported.

4.1 Experimental Setup

In this section, we detail the setup used to reproduce the main
results of DIME, focusing on the original embedding models, datasets,
retrieval algorithms, and evaluation metrics.

Embedding Models. We investigate the same dense encoders:

o ANCE [42] uses hard-negative mining during contrastive
learning to improve robustness.
o Contriever [14] emphasizes unsupervised contrastive pre-
training, aiming for strong zero-shot generalization.
e TAS-B [13] employs distillation-based training with topic-
aware sampling.
All models produce 768-dimensional embeddings (unless otherwise
stated) and are optimized for dot-product.
Datasets. MS Marco passage[4], We use two primary datasets:

o MS MARCO Passage [25] is a large-scale passage retrieval
benchmark containing real-world queries from Bing’s search
logs. This collection is commonly used to fine-tune and eval-
uate dense retrieval methods. We also utilize the TREC Deep
Learning (DL) tracks 2019 and 2020, as well as the Hard
subset, to gauge performance in more challenging query
scenarios.

¢ TREC Robust (a.k.a. Robust ’04) uses documents from TREC
disks 4 and 5 [36, 37], minus the Congressional Record. The
Robust retrieval track was designed to emphasize “difficult”
or poorly performing topics, thereby testing a system’s con-
sistency and resilience.
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Implementation. We index the document embeddings using the
Flat index within the FAISS library, which stores all vectors in
raw form (i.e., without compression) and supports efficient exhaus-
tive nearest neighbor searches. By default, we retrieve the top k
candidate passages per query; unless otherwise specified, k = 10.
Distances or similarities between the query and document em-
beddings are computed by an inner product. We reproduced both
DIME’s approaches:

e The pseudo-relevance feedback variant, {uppr@k, by adjust-
ing the query vector (or its dimensions) via centroid-based
feedback from the top k retrieved documents.

e We also investigate the LLM-based estimator (uyy\), which
relies on synthetic passages generated by a language model
for dimensional scoring.

Relatively to the latter, we perform LLM-based answer generation
of each of the queries evaluated using the official GPT-4 API, setting
the generation seed as provided in the reference implementation.
Measures. We evaluate retrieval performance using the standard
nDCG@10 metric, which places emphasis on ranking high-quality
documents near the top of the results list. In particular, we report
nDCG@10 across various queries from each collection to assess
consistency and effectiveness in both in-domain (MS MARCO) and
out-of-domain (TREC Robust) scenarios.

Hardware. All experiments are conducted on a computational
cluster equipped with eight NVIDIA A100 GPUs. Each job runs on
a single GPU unless otherwise specified. Our implementation is
primarily in Python, making use of PyTorch for model loading and
FAISS for efficient similarity search.

4.2 Results

Table 1 reports nDCG@10 scores for our main reproduction of
DIME’s original results, as well as a comparison to the originally
reported figures. We present outcomes on four test sets—DL 19, DL
"20, DL Hard, and Robust *04—and group results by encoder (ANCE,
Contriever, TAS-B). Within each group, we show performance for
each DIME instantiation (4prr@1, UPRF@2> UPRF@5» and U 1\m) across
varying proportions of retained dimensions (e.g., 0.2,0.4,0.6,0.8, 1).

Overall, the reproduced results closely align with those initially
reported, demonstrating the stability of DIME under different ex-
perimental conditions. Specifically:

¢ PRF-based DIMEs (upprgk): These consistently improve
over the no-filtering baseline in most settings, with the
largest gains typically observed on the TREC Robust col-
lection, suggesting that pseudo-relevance feedback can be
particularly beneficial for difficult queries.

e LLM-based DIME (u'IM): While computationally more
expensive (due to the generation of synthetic passages), it
often yields the best or near-best performance among the
DIME variants. Although relying on a third-party API-based
model to generate the synthetic documents, we were able to
reproduce the improvements.

¢ Encoder Differences: ANCE tends to benefit moderately
from dimension filtering; Contriever and TAS-B show es-
pecially strong improvements on collections like DL Hard
and Robust ’04, potentially thanks to how their pre-training
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Table 1: Comparison of nDCG@ 10 performance across TREC Deep Learning 2019, 2020, Hard, and Robust 2004 datasets,
showing DIME reproduction and original DIME results for ANCE, Contriever, and TAS-B under varying parameter settings.

DL’19 DL 20 DL HD RB "04
02 04 06 08 1 02 04 06 08 1 02 04 06 08 1 02 04 06 08 1
DIME Reproduction Results

W uPRF@L . o8y 553 638 650 176 539 612 644 055 272 331 329 061 259 312 330
S uPRF@2 089 565 637 .649 43 .166 543 612 .643 44 046 268 323 331 396 059 251 312 325 397

< uPRF@S 085 563 635 .648 159 543 614 644 050 276 335 332 056 247 311 329

ultM 091 548 660 .663 149 544 634 651 033 291 340 344 065 258 332 337

5 uPRF@L 675 683 686 .689 711 704 702 693 388 386 388 390 484 493 495 494
g__>a uPRF@2 673 675 679 685 ¢74 683 .685 .685 685 79 394 395 387 389 377 .493 497 498 494 466

2 uPRF@ 649 664 678 .683 695 686 690 685 377 378 387 387 477 479 480 476

S ulttM 729 741 7751 749 723 720 714 712 408 406 414 405 497 505 499 498

o UPRE@L 732 732 734 729 700 702 711 705 359 374 383 375 433 449 450 455
s uPRF@ 719 731 731 725 715 687 698 709 707 g4 352 373 373 374 376 460 469 467 467 447

S uPRE@S 719 725 721 724 686 685 694 .697 369 385 389 395 462 467 469 469

utltM 757 755 757 759 708 707 717 718 389 413 418 405 456 471 476 475

Original DIME Results

L uPRF@L o33 550 644 .658 175 549 616 648 042 266 326 332 074 284 343 357
o uPRF@2 095 567 637 652 43 176 542 612 647 44 051 274 325 328 395 066 .273 341 356 3¢9

< uPRF@S 088 568 633 .647 155 545 613 .645 054 274 330 330 058 263 334 359

ulIM 081 569 651 663 171 537 629 655 042 284 339 348 078 280 354 371

5 uPRF@L 676 685 686 .689 711 703 701 692 396 395 387 .389 512 522 527 523
8 uPRF@Z 675 675 679 685 75 682 685 687 685 7z .395 .391 394 399 377 500 513 517 515 499

2 uPRF@ 646 664 .680 .681 698 687 690 .686 379 385 383 387 504 513 511 512

S utM 720 742 752 750 719 722 725 710 392 409 414 412 527 539 539 530

o uPRF@L 719 731 733 729 697 699 709 703 349 376 374 375 458 475 475 471
o uPRF@ 718 733 731 726 715 684 .698 710 707 egq 359 377 382 391 375 465 474 476 470 453

S uPRF@S 709 721 719 721 683 687 693 .695 364 371 384 381 462 460 462 464

ultM 747 749 760 755 708 706 710 712 385 397 401 397 462 487 488 485

strategy helps handle out-of-distribution queries and have a
better separation among topics in their latent space.

o Robust ’04: For this dataset, our experiments show slightly
lower retrieval quality for both the baseline as well as the
results with fewer retained dimensions. What is important
to notice though is that the reducing dimensions improves
the baseline in the same way as reported by the original
authors, which indicates that the offset could derive from
minor differences in the settings used.

In summary, Table 1 affirms that DIME approaches can signif-
icantly bolster dense retrieval effectiveness, particularly in chal-
lenging or out-of-domain settings, and that our replication setup
matches the trends reported in the original study.

5 Generalization Study

In this section, we expand the scope of DIME’s evaluation to inves-
tigate its broader applicability beyond the original settings. Specifi-
cally, we test models trained with different objectives (e.g., cosine
similarity), explore embeddings that follow a Matryoshka structure,
and examine higher-dimensional representations. We further eval-
uate DIME on new datasets—including zero-shot scenarios—and
experiment with various LLMs beyond GPT-4. By diversifying both
the model and dataset landscapes, we aim to determine whether
DIME’s reported benefits remain robust across a range of architec-
tures and configurations, thereby shedding light on its potential
for broader deployment.

5.1 Experimental Setup

Embedding Models. To broaden the scope of our findings, we
test:

e Multilingual E5! [38, 39], e5-large in this paper, handles
cross-lingual queries and documents for multilingual re-
trieval scenarios.

e Mxbai-Embed Large?, mxbai in this paper, targets robust,
versatile embeddings for downstream tasks.

¢ Snowflake-Arctic Embed? [46], arctic-v2 in this paper,
leverages an advanced training curriculum to produce strong
general-purpose embeddings.

e BAAI-BGE-M3* [24, 41], bge-m3 in this paper, combines
balanced representations for both short and long passages,
demonstrating robustness across diverse benchmarks.

LLMs. We evaluate LLM DIME (described in Section 2) across a
variety of LLMs:

e GPT-4 and GPT-40 [1, 15], OpenAl’s state-of-the-art models,
are the version used in the original DIME framework and its
latest release, respectively;

e Qwen 2.5 [44], an open source multilingual general pur-
pose family of LLMs showcasing performance comparable
to proprietary models, which we use in its 32B, 7B and 3B
parameters variants;

Uhttps://huggingface.co/intfloat/multilingual-e5-large
Zhttps://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
Shttps://huggingface.co/Snowflake/snowflake-arctic-embed-1-v2.0
“https://huggingface.co/BAAI/bge-m3


https://huggingface.co/intfloat/multilingual-e5-large
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0
https://huggingface.co/BAAI/bge-m3
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e Llama 3.1 and 3.2 [9], similarly to Qwen, a family of open
source multilingual models, which we use in its 8B and 3B
parameters variants;

e DeepSeek R1 [12], a family of models trained for improved
reasoning capabilities; we use the distilled 32B and 7B pa-
rameters Qwen-based variants.

For all models, temperature is set to 0.5 and top_p is set to 0.7 dur-
ing generation. For models with reasoning capabilities the thinking
tokens have been removed from the generated answer.

Datasets. We extended our evaluation to the zero-shot BEIR bench-
mark [32], excluding the four corpora that are not publicly available
to ensure reproducibility.

Hardware. For the generalization study, we build on the experi-
mental setup used to replicate the results detailed in Section 4.1.
Inference on open source LLMs is performed using vLLM [18], with
32B models quantized to 4 bits to efficiently fit within the memory
constraints of a single GPU.

5.2 Generalization to other models

To verify whether our Dimension Importance Estimation (DIME)
strategy applies beyond the specific encoders described in ear-
lier sections, we extend our analysis to a range of other dense
retrieval models, as summarized in Table 2. Each model brings dis-
tinct training objectives or domain focuses; for example, bge-m3
aims at broader domain coverage, mxbai targets multilingual or
multi-domain robustness, e5-large emphasizes multilingual embed-
dings, and arctic-v2 seeks strong general-purpose representations
through advanced curriculum design.

Despite these architectural and training variations, the table
reveals several consistent patterns when pseudo-relevance feedback
(PRF) is used to guide dimension filtering. First, all models generally
achieve noticeable improvements in nDCG@10 by discarding a
subset of dimensions, mirroring earlier trends observed with ANCE,
Contriever, and TAS-B. Second, the exact fraction of coordinates
retained (e.g., 40-60%) can slightly shift among models, yet in every
case there appears to be a sweet spot that meaningfully outperforms
using the full set of latent dimensions. Third, models tested in out-
of-domain or more challenging settings—such as TREC Robust *04
or the DL HD subset—continue to benefit from dimension filtering,
suggesting that DIME’s focus on query-relevant coordinates helps
counteract domain mismatches or inherently difficult topics.

Overall, these additional experiments support the conclusion
that DIME is broadly applicable across diverse embedding architec-
tures. Whether the encoder is multilingual, specialized for certain
domains, or generically trained, adaptively pruning dimensions ap-
pears to reduce noise and sharpen the representation, thus enhanc-
ing retrieval performance in both familiar and zero-shot scenarios.

In contrast to the models tested in the original work, all models
adopted in this section, with the exception of BAAI-BGE-M3, are
trained to optimize cosine similarity. In order to leverage the dot-
product as a signal estimation mechanism, the produced vectors
have been normalized. It is interesting to note how dimension
masking, which affects vector normalization, does not cause harm
to the retrieval quality. This is due to the way DIME performs
dimension importance estimation, dropping the dimensions with a
low score.
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5.3 Generalization to Zero-Shot Datasets

While earlier experiments focused on in-domain and closely related
benchmarks, many real-world applications involve queries and con-
tent that deviate from a model’s training distribution. We therefore
assess whether DIME can enhance retrieval in zero-shot scenarios.
In particular, we use the BEIR benchmark [32], which comprises
diverse IR tasks such as fact verification (Fever), argumentative
retrieval (ArguAna), and financial QA (FiQA).

Table 3 reports nDCG@10 scores across 13 BEIR tasks. Each row
corresponds to a dataset and pseudo-relevance feedback variant
(uP RF@1 ,PRF@2 o, PRF@5 ), while columns indicate the fraction
of dimensions retained (0.2, 0.4, 0.6, 0.8) for each model. Several
consistent trends emerge:

e Cross-Dataset Robustness. Even though the encoders were
trained on unrelated data, dimension pruning often boosts
performance. For instance, on c-fever, TAS-B sees notice-
able gains when moving from 0.8 to 0.2 retained dimensions
under yPRF@1,

e Varying Optimal Prune Rates. Different tasks favor dif-
ferent levels of pruning. On arguana, TAS-B achieves its
highest nDCG@10 at around 40% or 60% dimension reten-
tion, whereas on figa, a more aggressive prune rate (e.g.,
20%) can yield stronger gains with u”RF@2 PRE@5

e Minimal Regression on Strong Baselines. Tasks such
as quora and nq show only marginal changes because both
models already perform strongly out-of-the-box. In these
cases, dimension pruning neither substantially helps nor
harms, indicating a relatively safe application of DIME.

oru

These results suggest that DIME’s benefits generalize beyond the
domain of its original training data. In particular, by focusing on
the coordinates that most strongly align with the pseudo-relevant
feedback, DIME can reduce noisy dimensions even when the query
or document distribution shifts dramatically. This finding is partic-
ularly valuable for applications that must handle diverse tasks or
emerging topics without specialized training or fine-tuning.

5.4 LLM-Based Filtering with Different Models

Table 4 reports nDCG@10 scores for various Large Language Mod-
els (LLMs) used to generate synthetic text for LLM-based DIME.
The experiments span two encoders (TAS-B and arctic-v2) over
three TREC Deep Learning collections (DL ’19, DL 20, DL HD),
with each row representing a distinct LLM. Our selection covers
high-parameter, proprietary systems (GPT-4, GPT-40) as well as
mid-scale open-source alternatives (Qwen 2.5, Llama 3.x) and an
advanced reasoning models (Distilled DeepSeek R1).

Across collections, most LLMs yield competitive results. GPT-4
and GPT-4o generally rank at or near the top, although the optimal
fraction of retained dimensions varies with the dataset and encoder.
For instance, GPT-4 with TAS-B attains peak performance on DL
’20 at 0.6 or 0.8 retained dimensions, while on DL ’19 the gains
saturate around 0.4-0.6. This variability underscores that the ideal
level of dimension pruning depends on both the underlying encoder
and the query distribution.

In general, relatively small open-source models such as Llama-
3.1gp can be used as an open and cheaper alternative to GPT-4.
When queries are harder—as in DL HD—larger (but still open)
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Table 2: nDCG@10 performance for the bge-m3, mxbai, e5-large, and arctic-v2 retrieval models, showing comparisons across

Cesare Campagnano, Antonio Mallia, and Fabrizio Silvestri

TREC Deep Learning 2019, 2020, Hard, and Robust 2004 under different under varying parameter settings.

DL 19 DL ’20 DL HD RB ’04
02 04 06 08 1 02 04 06 08 1 02 04 06 08 1 02 04 06 08 1
o uPRF@L 700 700 699 .696 692 708 711 706 0358 359 365 .362 427 443 444 444
€ PRF@2 g7 689 694 .690 705 708 706 701 0354 359 358 .363 434 443 442 442
i 668 677 335 424
@ yPRF@S 696 700 702 .688 677 680 685 685 343 358 360 362 428 430 433 435
ultM 749 737 733 729 739 746 739 733 381 396 384 379 451 465 465 466
_ uPRF@L 714 726 722 722 695 710 712 .709 376 391 393 390 47T 479 489 492
S uPRF@2 735 724 722 718 o4 710 717 722 723 705 386 401 407 405 3g; 486 493 497 496 453
= PRF@5 . : i :
E uPRF@S 706 716 718 715 727 732 721 717 393 403 404 402 488 489 492 492
ultM 752 763 749 737 732 734 7735 729 407 407 401 400 486 493 490 484
g uPRFOL 731 748 744 747 701 730 744 740 385 384 397 402 440 459 470 469
5 uPRF@ . 719 740 739 734 719 712 741 741 730 733 369 374 393 394 379 455 465 476 AT1 450
wou . . B . 71 . . . . . . B R . . .
5 uPRF@S 717 733 735 732 710 727 728 730 368 374 385 375 461 472 481 468
ullM 731 760 748 746 711 735 738 735 375 386 398 398 442 474 482 478
o uPRF@L 740 742 737 739 735 743 746 747 406 407 406 408 492 499 500 .500
o uPRF@ 740 739 736 741 g95 732 741 744 746 733 368 399 398 .400 357 .499 503 .501 497 466
g uPRF@5 739 743 735 734 739 739 744 746 399 399 400 .395 491 492 494 494
ultM 750 745 742 736 711 715 719 708 409 410 405 395 470 477 477 478

models like Qwen2.5355 tend to yield better results, suggesting
that GPT-4 is not necessary overall. Although larger models (e.g.,
GPT-4, Qwen2.535p, Llama-3.1gp) typically achieve slightly higher
metrics than their smaller counterparts (e.g., Qwen2.53p, Llama-
3.23p), architectural efficiency or domain adaptation can sometimes
compensate for differences in parameter count.

With regard to DeepSeek R1, it produces shorter responses that
contain less semantic content useful for discriminating among di-
mensions, which leads to slightly lower performance compared to
other models.

Finally, while GPT-4 frequently delivers the highest effectiveness,
its higher latency and computational costs suggest that mid-scale
open-source models offer a favorable trade-off between retrieval
gains and inference speed.

6 Improvements

In this section, we present the proposed improvements to DIME.

6.1 Softmax-Weighted Centroid (SWC)

In the original DIME formulation, the centroid of the top-k pseudo-
relevant documents is computed as the simple arithmetic mean
of their embedding vectors. This centroid is then used to estimate
the importance of each dimension (cf. Section 2). However, in Sec-
tion 3.2 we show that the presence of varying relevance scores
may suggest that not all documents should contribute equally. To
address this, we propose a new approach called Softmax-Weighted
Centroid (SWC).

Instead of averaging the top-k document representations with
uniform weights, we leverage a temperature-scaled softmax func-
tion to assign higher weights to more relevant matches. Specifically,
let M be the set of top-ranked matches for a given query, each
match m € M comprising an embedding v, and a scalar rele-
vance score rp,. Denoting V as the collection of embeddings and
r= {rm}fn=l as the corresponding scores, we compute the centroid

asc= Zlfnzl (am Vm) where a;, = 0(r)y,. We use a low 7 (temper-

ature of the softmax, defined in Eq. 3), in fact, as 7 decreases, the

weight distribution becomes sharper, which can further improve

the SNR if the top documents are significantly more relevant.
Table 5 key properties:

e Score-Aware Averaging: Unlike uniform averaging, SWC
raises the contribution of documents with higher retrieval
scores, making the final centroid more representative of
strongly relevant matches.

e Temperature-Scaling: The temperature 7 > 0 controls how
sharply the weights concentrate on high-scoring documents.
A small 7 emphasizes top-scoring matches, while a large 7
yields a nearly uniform distribution.

o Flexibility and Compatibility: The SWC approach can be
easily integrated with any dimension-importance estimator
that uses a centroid (e.g., PRF DIME), by simply replacing
the arithmetic mean with the score-weighted centroid.

6.2 DIME-based Reranking

Table 6 illustrates how DIME can be leveraged as a score refinement
technique applied directly to the top 100 documents retrieved by
the initial query. This approach is particularly justified by the first
query’s high recall, which ensures that the most relevant documents
are already present in the initial retrieval set. By refining scores
within this restricted subset, DIME effectively enhances ranking
quality while maintaining computational efficiency, as it avoids the
need for a second query which might increase latency. This shows
the practical applicability of the method in real-world retrieval
pipelines, where balancing effectiveness and efficiency is crucial.

7 Conclusion

In this work, we provided a comprehensive study of Dimension IM-
portance Estimation (DIME), confirming its effectiveness for dense
retrieval through both replication of prior experiments and exten-
sive new evaluations. Our results show that selectively pruning



Unveiling DIME

Table 3: nDCG@ 10 performance on the BEIR benchmark.

TAS-B arctic-v2

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

g uPRF@L 366 361 351 340 442 441 440 438

S PRF@2 333 333 331 331 321 428 429 430 431 431

2 PRF@5

5 u 319 319 320 322 420 423 424 426

g uPRI@L 240 241 240 241 368 381 387 .394

& uPRF@2 544 239 238 237 228 386 396 .401 .405 418

& yPRF@S 955 246 244 242 398 407 410 413

= uPRF@1 368 375 376 379 416 425 431 434

T yPRF@2 377 380 379 380 384 425 432 435 436 434

= PRF@S 377 379 377 382 428 433 439 438

. uPRF@L 665 636 694 .697 910 912 913 914

g uPRF@2 686 712 717 717 700 909 914 914 915 915

= yPRF@S gy 720 727 725 901 .908 910 .913
uPRF@L 979 286 .293 .295 441 446 450 452

q‘:c‘% uPRF@2 981 283 287 288 .300 440 .448 448 449 454
uPRF@S 273 275 281 289 428 437 438 440

8. 4PRF@1 535 540 548 555 636 647 653 658

8, uPRF@2 550 557 563 567 .584 .657 .663 .666 .668 .682

S uPRF@S 535 547 555 561 650 659 665 .667

g PRF@L 318 325 327 327 364 369 368 .368

oy

5 yPRF@2 331 317 323 325 319 367 .367 .369 .366 .352

£ uPRF@S 308 316 321 320 357 360 363 .361
uPRF@1 445 453 458 461 619 625 628 .630

g uPRF@2 453 457 457 460 463 617 627 628 .630 .637
uPRF@S 449 452 454 458 612 620 626 .631

o uPRF@L 8r4 825 826 .828 883 885 .886 .886

S yPRF@2 839 821 823 .826 .835 .884 .886 .887 .387 .888

< uPRF@5 801 804 811 .818 871 878 881 .883

n uPRF@L 356 151 151 152 204 206 206 .207

< uPRF@ 15 147 146 .146 149 205 208 .207 .208 .203

s PRF@S 148 143 141 142 201 206 206 .206

5 uPRF@L 619 624 626 .627 692 694 699 701

& uPRF@Z 699 621 625 626 .643 .703 712 707 .710 .710

Q

> yPRF@S 597 610 612 .617 683 700 696 .701

£ uPRF@L 163 166 .161 .166 249 251 252 .253

2 uPRF@2 154 168 167 .165 .163 .243 249 256 254 .259

5 uPRF@S 161 163 165 .162 250 252 253 257

< uPRF@1 434 467 478 498 826 833 .831 .833

§ uPRF@2 456 489 501 507 .481 .829 .831 .835 .843 .834

L yPRF@S 484 503 510 511 825 839 838 .843

low-relevance coordinates consistently enhances nDCG@10 across
varied datasets and encoders, including larger open-source models
and challenging zero-shot tasks.

We further offered theoretical insights by framing DIME as a de-
noising mechanism, where dimension filtering reduces embedding
noise while preserving salient semantic signals. This interpretation
clarifies why dimension pruning boosts retrieval in practice and
guided our development of extensions such as attention-inspired
PRF strategies and dynamic retention policies. Notably, DIME op-
erates without any model re-training, making it a lightweight yet
powerful addition to existing pipelines.

Future work may explore more adaptive mechanisms for select-
ing pruning rates per query, integrate multi-turn feedback, or apply
DIME to specialized retrieval tasks (e.g., cross-modal search). We
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Table 4: nDCG@10 scores for various LLMs (GPT-4, GPT-4o,
Qwen, Llama, and DeepSeek) used to generate synthetic text
for LLM-based DIME, evaluated on TREC Deep Learning 2019,
2020, and Hard tasks with TAS-B and arctic-v2 retrievers.

DL 19 DL °20 DL HD
0.2 04 06 08 02 04 06 08 02 04 06 08

GPT-4 757 755 757 759 708 707 717 718 .389 413 418 405
GPT-40 749 758 756 .754 .703 .699 .700 .705 .393 .393 391 .392
Qwen2;p 698 733 744 741 .687 .689 .696 .694 381 .394 401 .400
i Qwen2;yp 717 730 745 743 695 .691 .692 .695 .337 .363 .381 .386
fj Qwen2s;p 743756 754 749 694 702 .708 .705 .398 .390 401 .399
Llama-3.235  .712 726 731 731 .692 .695 .703 .697 .358 358 .371 .378
Llama-3.13g  .750 .756 .758 .750 .695 .711 .708 .702 .375 .383 .392 .388
DeepSeekspp 710 726 730 .734 .677 .695 .702 .699 377 387 393 .396
DeepSeek;g 687 712 713 718 .659 .677 .687 .688 .361 .372 .374 .384
GPT-4 750 745 742 736 711 715 719 .708 .409 410 .405 .395
GPT-40 735 746 735 725 .703 .707 .704 .701 .390 .390 .392 .386
~ Qwen23p 723723 721 723 675 .684 .680 .679 .391 .394 389 .386
z Qwen2;p 728 734 728 722 .701 .701 .707 .701 .361 .382 .380 .377
"é Qwen2s;p 743 741 731 726 702 .696 .697 .692 .393 .396 .384 .383
<

Llama-3.235  .721 724 712 706 .689 .698 .697 .690 .375 372 .368 .371
Llama-3.1gg  .746 .750 .738 .726 .711 .708 .699 .692 .404 .395 .390 .389
DeepSeekspp 722 727 723 722 703 695 .693 .689 386 .393 .386 .383
DeepSeekyg  .670 .681 .677 .670 .654 .659 .668 .652 .362 .368 .374 .374

Table 5: nDCG@10 performance on TREC Deep Learning
2019, 2020, and Hard tasks using Softmax-Weighted average.

DL’19 DL 20 DL HD
02 04 06 08 02 04 06 08 02 04 06 038
uPRF@lO

TAS-B 709 711 721 720 676 .684 .686 .693 .352 .370 .377 .378
arctic-v2 711 725 727 726 725 729 737 .736 .393 .390 .398 .395

SWCPRF@10

TAS-B 725 733 732 727 708 710 .718 713 .370 .384 .386 .380
arctic-v2 726 738 727 729 731 734 737 737 399 399 400 .395

Table 6: nDCG@10 performance on TREC Deep Learning
2019, 2020, and Hard tasks when DIME is used as a reranker.

DL 19 DL ’20 DL HD
02 04 06 08 02 04 06 08 02 04 06 038
Original DIME

TAS-B 712725 721 724 686 .685 .694 .697 369 .385 .389 .395
arctic-v2 739 743 735 734 739 739 744 746 399 399 400 .395

Reranking

TAS-B 712725 721 724 686 .685 .694 .697 369 .385 .389 .395
arctic-v2 739 743 735 734 738 739 .744 746 400 .399 400 .395

believe our findings and open-source artifacts encourage broader
adoption of dimension importance estimation, highlighting its po-
tential to improve both retrieval accuracy and efficiency in next-
generation semantic search systems.
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