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Abstract
Dimension IMportance Estimation (DIME) is a recently proposed

technique to enhance ranking effectiveness of dense retrieval mod-

els by pruning irrelevant embedding dimensions through Pseudo

Relevance Feedback (PRF DIME) or exploiting dense representa-

tions of Large Language Model-generated answers (LLM DIME).

Despite strong empirical performance, its theoretical foundations

and generalizability remain open questions.

In this paper, we propose four key contributions. First, we pro-

vide a rigorous theoretical analysis of DIME, framing it as a denois-

ing mechanism that mitigates embedding noise while preserving

the salient information. Second, we conduct a comprehensive re-

producibility study, confirming previously reported gains for both

PRF DIME and LLM DIME. Third, we extend the evaluations of

PRF DIME by applying it to a broader set of embedding models

with distinct characteristics, such as matryoshka embeddings, co-

sine similarity-optimized models, and architectures that produce

high-dimensional representations, while also testing it on diverse

retrieval datasets. For LLM DIME, we expand the analysis across

a range of LLMs, comparing high-parameter proprietary models

with cheaper open-source alternatives. Finally, we refine DIME by

introducing an attention-inspired PRF mechanism and propose to

leverage dimension importance as a reranking technique.

https://github.com/pinecone-io/unveiling-dime
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1 Introduction
Embedding-based neural retrieval models now lie at the heart of

modern Information Retrieval (IR), mapping queries and docu-

ments into high-dimensional vector spaces for contextual matching

[20, 29]. Unlike older sparse methods such as BM25 [30] or even cur-

rent learned sparse models [5, 11, 19, 21–23, 45], dense embeddings

deliver remarkable improvements by capturing higher-level seman-

tic similarities. However, the move to high-dimensional embedding

spaces introduces new challenges. Not all coordinates contribute

equally to capturing relevance signals, and certain dimensions can

even hurt retrieval accuracy by introducing noise.

In response, recent work has explored dimension pruning to

mitigate these issues and to focus on the most salient coordinates

for a particular query. One such approach is the Dimension IMpor-
tance Estimation (DIME) framework [10], which proposes selecting

a query-dependent subspace in which only the most relevant dimen-

sions are retained. Empirically, DIME has shown to significantly

improve ranking effectiveness across multiple benchmarks.

Despite these promising results, some key research questions

remain open. First, while DIME has demonstrated strong empirical

performance, its mathematical underpinnings remain unclear. A

rigorous theoretical analysis of DIME would clarify how dimension

selection balances discarding noise and preserving information.

By casting dimension pruning in a denoising framework, we could

better understand the geometry of subspace selection and why

removing certain coordinates boosts retrieval performance (RQ1).
Second, reproducibility of DIME has yet to be fully established. As

with other neural IR methods, small changes to hyperparameters

or evaluation procedures may yield divergent findings [2] (RQ2).
Third, DIME’s generalizability to newly emerging embedding mod-

els has not been systematically investigated. Modern IR applica-

tions involve both extremely large-scale embeddings (potentially

exacerbating dimensionality issues) and compact, efficiency-driven

encoders designed for real-world deployment. Whether DIME re-

mains effective across different datasets, domains, and embedding

architectures is an open question (RQ3). Finally, the potential for
refining DIME to further enhance its applicability and performance

remains unexplored (RQ4).
In this paper, we address these open questions through a com-

bination of theoretical insights, reproducibility analysis, general-

ization studies, and methodological refinements. To improve read-

ability, we structure the remainder of this work to directly align

with these research questions. Section 2 provides an overview of

key concepts related to dense retrieval, pseudo-relevance feedback

(PRF), large language models, and the DIME framework. Section 3

addresses RQ1 by establishing a formal foundation for dimension

https://github.com/pinecone-io/unveiling-dime
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pruning, framing it as a denoising mechanism to explain its ef-

fectiveness. Section 4 examines RQ2, presenting a comprehensive

reproducibility study to assess the robustness of DIME’s empirical

improvements. Section 5 investigates RQ3, evaluating the general-

izability of DIME across different retrieval scenarios, embedding

models, and datasets. Finally, Section 6 explores RQ4, proposing
two refinements: (i) a weighted averaging technique that improves

retrieval effectiveness while making the model more robust to hy-

perparameter selection, and (ii) a reranking strategy that leverages

DIME to refine ranking results, enhancing applicability. Section 7

summarizes our findings and discusses future directions.

2 Background and Preliminaries
This section provides the necessary background for understanding

our work. We begin with an overview of dense vector retrieval,

followed by a recap of pseudo-relevance feedback (PRF) approaches.

We then summarize current developments in LLMs and, finally,

introduce the Dimension IMportance Estimation (DIME) paradigm.

Dense Vector Retrieval. Over the past decade, the paradigm of

vector retrieval has rapidly become a dominant approach in IR, pro-

pelled by advances in neural networks and LLMs. Traditional IR

methods such as BM25 rely primarily on lexical overlap, treating

each unique token as a dimension in a large sparse vector space.

While these methods are robust and interpretable, they can be lim-

itedwhen query and document vocabulary differs (e.g., synonyms or

paraphrases). By contrast, dense embedding models project queries
and documents into a shared, lower-dimensional representation

space [8]. Each textual input is mapped to a dense vector, typically

of a few hundred dimensions (e.g., 768), by a neural encoder. Re-

trieval then proceeds by measuring similarity between the query

and document embeddings. Common retrieval metrics for dense
representations include Inner Product (IP) and Cosine Similarity.

Normalization. In many practical systems, normalizing all embed-

dings to unit length (i.e., ∥x∥2 = 1) is performed so that an inner
product between normalized vectors directly corresponds to their co-
sine similarity. Such normalization can simplify the search pipeline,

since one only needs to store unit vectors and use a standard dot-

product index. Moreover, it ensures that each embedding’s mag-

nitude does not unfairly dominate the distance measure, focusing

instead on the directional alignment in the latent space.

Matryoshka Embeddings. Traditional embedding models produce

fixed-size vector representations, often without consideration for

task-specific requirements or scalability.Matryoshka Representation
Learning [17] addresses this limitation by enabling embeddings to

remain effective even when truncated to smaller dimensions. This

is achieved by applying the same training objective to both the full

embedding and its truncated portions.

Pseudo-Relevance Feedback. PRF is a classical technique in IR

that refines a query representation using the top-ranked documents

initially retrieved for that query. The assumption is that these top

documents are likely to be relevant, even if they are not manu-

ally labeled. Rocchio [31] introduced a pioneering vector-space

method for iteratively adjusting the query based on these feedback

documents, while later work like RM3 used statistical term-level ex-

pansions. In dense retrieval, PRF is often interpreted as shifting the

query embedding toward the centroid of its top-𝑘 retrieved embed-

dings, thereby injecting relevance signals to improve subsequent

ranking.

Large Language Models (LLMs).With the advent of the Trans-

former architecture [35], language modeling shifted from bidirec-

tional encoders such as BERT [8] to autoregressive causal decoders

like GPT-2 and GPT-3 [6, 26, 27]. These generative models allow for

flexible text generation at large scales and now include both closed-

source variants and open-source models suitable for production.

Empirical work on scaling laws [16, 28] shows that increasing

model size typically boosts performance. Proprietary models such

as GPT-4 and GPT-4o [1] lead many benchmarks, but open-source

LLMs like Llama [9, 33, 34] and Qwen [3, 43, 44] can closely com-

pete, especially with specialized training or domain adaptation.

Moreover, recent attempts to optimize inference-time compute via

reinforcement learning have led to the OpenAI o1/o3 series [15] and

DeepSeek R1 [12], each designed to improve step-by-step reasoning,

resulting in an overall higher-quality output.

Despite strong performance, large models often incur high infer-

ence costs. GPT-4 may require tens of seconds to generate a com-

plex answer, making it challenging in real-time retrieval scenarios.

Hence, while we demonstrate how GPT-4 can produce synthetic

documents for Dimension Importance Estimation (Section 2), we also
investigate smaller or more cost-effective LLMs (Qwen 2.5, Llama

3.x, DeepSeek R1) that offer faster inference.

Dimension Importance Estimators (DIME). Although dense

retrieval brings clear advantages, recent evidence shows that not all
dimensions in a latent space are equally useful for every query [10].

A fixed-size vector (e.g., dimension 768) can encode many linguistic

or conceptual features, but some coordinates may be irrelevant—or

even detrimental—for a specific information need. This reality is

further exacerbated when embeddings exhibit hierarchical (Ma-
tryoshka) structures or when the vectors vary widely in norm.

Key Concept. DIME assigns an importance score 𝑢𝑞 (𝑖) to each co-

ordinate 𝑖 ∈ {1, . . . , 𝑑} of the query embedding q ∈ R𝑑 . Sorting
dimensions by 𝑢𝑞 (𝑖) and retaining the top-𝑘 effectively projects the
query onto a query-adaptive subspace. Empirical findings indicate

that dimension filtering can substantially improve retrieval metrics

while requiring neither re-training nor re-indexing [10].

Magnitude DIME. One of the simplest DIMEs uses only the absolute

value of each query coordinate:

𝑢
mag

𝑞 (𝑖) =
��𝑞𝑖 ��.

This method assumes larger components in the query embedding

carry greater importance. Though computationally cheap, it over-

looks crucial “small” coordinates that are semantically relevant [10].

PRFDIME. Drawing on the PRF concept (Section 2), suppose𝑑1, . . . , 𝑑𝑘𝑓
are the top-𝑘𝑓 (pseudo-relevant) documents retrieved for 𝑞. Their

centroid is

p =
1

𝑘𝑓

𝑘𝑓∑︁
𝑗=1

d𝑗 .

The PRF DIME then scores each dimension by

𝑢
𝑃𝑅𝐹@𝑘𝑓
𝑞 (𝑖) = 𝑞𝑖 · 𝑝𝑖 ,
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i.e., coordinates of q that align strongly with the centroid of pseudo-

relevant embeddings are prioritized.

LLM DIME. Finally, LLM DIME utilizes a generative model to

produce a synthetic passage a ∈ R𝑑 :

(1) Prompt an LLM (e.g., GPT-4) with query 𝑞,

(2) Encode the generated text into a,
(3) Score each dimension via 𝑢𝐿𝐿𝑀𝑞 (𝑖) = 𝑞𝑖 · 𝑎𝑖 .

This approach can be powerful in scenarios where top-retrieved

documents are suboptimal or where we can afford the cost of LLM

calls. It can yield strong improvements in zero-shot or domain-

mismatch tasks, though it may suffer from high inference latency

if large LLMs are used at scale.

Recent work [7] has also shown the importance of negative

feedback in the dimension importance estimation.

3 DIME from a Denoising Perspective
Dimension IMportance Estimation (DIME) works by selectively

pruning embedding coordinates deemed irrelevant to a query, thereby

focusing on dimensions most indicative of relevance. In this section,

we argue that this process can be interpreted as a form of denoising,
where dimension filtering acts to suppress random fluctuations in

embedding vectors while preserving the core semantic “signal” that

corresponds to the user’s information need.

3.1 Signal vs. Noise in Top-Ranked Documents
The term information need is common in information science and

describes a person’s or a group’s wish to find and get information

that meets a conscious or unconscious requirement. Hjørland [40]

explains that it is closely linked to relevance: if something is im-

portant for someone to complete a specific task, we can say that

person needs that information.

Let {d(𝑖 ) }𝑘
𝑖=1

⊂ Rℎ be the set of top-𝑘 retrieved documents

(in embedding space). We model each d(𝑖 ) as a sum of a signal
component plus a noise term:

d(𝑖 ) = 𝛼 (𝑖 ) s + 𝝐 (𝑖 ) ,

where

• s ∈ Rℎ is the information need (the signal) common to the

top-𝑘 retrieved documents,

• 𝛼 (𝑖 ) ≥ 0 reflects how strongly document 𝑖 expresses that

information need , and

• 𝝐 (𝑖 ) ∈ Rℎ is the noise component specific to document 𝑖 .

Furthermore, following the usual convention, a subscript 𝑗 to a vec-

tor represents the j-th component of that vector, thus component-

wise we write

d(𝑖 )
𝑗

= 𝛼 (𝑖 ) s𝑗 + 𝝐 (𝑖 )
𝑗
,

We assume

E[𝝐 (𝑖 ) ] = 0, Var

(
𝜖
(𝑖 )
𝑗

)
= 𝜎2,

and that 𝜖
(𝑖 )
𝑗

is independent across indices 𝑖, 𝑗 . The scalar 𝛼 (𝑖 )
and

the vector s are unobserved but serve to illustrate that the top-𝑘

embeddings share a common “core signal” plus random noise 𝝐 (𝑖 ) .

Signal Concentration. A standard way to aggregate the top-𝑘

embeddings is via a weighted centroid:

c =

𝑘∑︁
𝑖=1

𝑤 (𝑖 ) d(𝑖 ) where

𝑘∑︁
𝑖=1

𝑤 (𝑖 ) = 1.

Writing 𝑐 𝑗 as the 𝑗-th dimension of c, we have

𝑐 𝑗 =

𝑘∑︁
𝑖=1

𝑤 (𝑖 ) [𝛼 (𝑖 )𝑠 𝑗 + 𝜖
(𝑖 )
𝑗

]
= 𝑠 𝑗

𝑘∑︁
𝑖=1

𝑤 (𝑖 )𝛼 (𝑖 ) +
𝑘∑︁
𝑖=1

𝑤 (𝑖 ) 𝜖 (𝑖 )
𝑗︸         ︷︷         ︸

𝜂 𝑗

. (1)

Thus, in the special case of uniform weighting,𝑤 (𝑖 ) = 1

𝑘
,

𝜂 𝑗 =
1

𝑘

𝑘∑︁
𝑖=1

𝜖
(𝑖 )
𝑗

, E[𝜂 𝑗 ] = 0, Var(𝜂 𝑗 ) =
𝜎2

𝑘
.

Viewing Relevance as Dot Product. Let q ∈ Rℎ be a query

embedding and 𝑟 (·) be our relevance scoring function that we

assume to be computed by simple dot-product, we have

𝑟

(
𝑞, 𝑑 (𝑖 )

)
= 𝑞 · 𝑑 (𝑖 ) =

ℎ∑︁
𝑗=1

𝑞 𝑗𝑑
(𝑖 )
𝑗

=

ℎ∑︁
𝑗=1

(
𝑞 𝑗𝛼

(𝑖 )𝑠 𝑗 + 𝑞 𝑗𝜖 (𝑖 )𝑗

)
The contribution of the 𝑗-th term of the query to 𝑟 (·) is given by:

𝑟 𝑗

(
𝑞 𝑗 , 𝑑

(𝑖 )
𝑗

)
= 𝑞 𝑗𝛼

(𝑖 )𝑠 𝑗 + 𝑞 𝑗𝜖 (𝑖 )𝑗

Likewise, the dot product with the centroid becomes

𝑟
(
𝑞, 𝑐

)
=

ℎ∑︁
𝑗=1

𝑞 𝑗 𝑐 𝑗 =

ℎ∑︁
𝑗=1

𝑞 𝑗

𝑘∑︁
𝑖=1

𝑤 (𝑖 ) 𝛼 (𝑖 ) 𝑠 𝑗 +
ℎ∑︁
𝑗=1

𝑞 𝑗 𝜂 𝑗

Optimal Hard Thresholding (Masking Dimensions). In DIME,

a binary mask m = (𝑚1,𝑚2, . . . ,𝑚ℎ) ∈ {0, 1}ℎ is learned to selec-

tively turn off dimensions deemed less relevant to q. Concretely,
𝑚 𝑗 = 0 means we zero out dimension 𝑗 in subsequent dot-product

similarity computations;𝑚 𝑗 = 1 means the dimension is retained.

A natural (though idealized) objective is to keep as much of the

signal as possible while suppressing noise. For instance, one might

minimize

min

m∈{0,1}ℎ


������ ℎ∑︁𝑗=1

𝑚 𝑗 𝑞 𝑗 𝑠̂ 𝑗 −
ℎ∑︁
𝑗=1

𝑞 𝑗 𝑠 𝑗

������ + 𝜆

ℎ∑︁
𝑗=1

𝑚 𝑗 𝑞 𝑗 𝜂 𝑗

 , (2)

where

• 𝑠̂ 𝑗 is an estimate of the true signal 𝑠 𝑗 (e.g., 𝑐 𝑗 from the cen-

troid),

• 𝜆 > 0 balances the trade-off between the two terms,

• 𝑚 𝑗 ∈ {0, 1} enforces a hard-threshold selection of dimen-

sions.

Minimizing Eq. 2 encourages the algorithm to keep dimensions that

best align with q (where 𝑞 𝑗 𝑠 𝑗 is large) and filter out dimensions

that are mostly noisy (large variance 𝜂 𝑗 with little or negative

contribution to the query).
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Remark 1. The actual, true, signal s cannot be directly observed.
In practice, one may replace 𝑠̂ 𝑗 with 𝑐 𝑗 , the 𝑗-th component of the
centroid, or use another form of aggregation (e.g., a average over the
top-𝑘 documents). This makes it possible to implement the objective
in Eq. 2 without direct access to the true signal vector.

Signal Estimation Since 𝑠 𝑗 is unobserved, the query-centroid score

is used as an estimator:

𝑞 𝑗𝑠 𝑗 = 𝑞 𝑗𝑐 𝑗 = 𝑟 𝑗 (𝑞 𝑗 , 𝑐 𝑗 )

Dimension Importance Estimation. The original DIME paper

uses the following heuristic to select the𝑚 mask.

𝑚∗
𝑗 =

{
1 if 𝑞 𝑗𝑐 𝑗 is among top-𝑙 values

0 otherwise

where 0 < 𝑙 < ℎ is an hyperparameter.

Bounding Noise via Chebyshev’s Inequality.We use the Cheby-

shev inequality to provide a probabilistic guarantee for the deviation

of a random variable from its mean, without requiring any specific

distribution (e.g., Gaussian). For the noise term 𝜂 𝑗 =
1

𝑘

∑𝑘
𝑖=1

𝜖
(𝑖 )
𝑗

,

which has mean zero and variance Var(𝜂 𝑗 ) = 𝜎2

𝑘
, Chebyshev’s

inequality states:

P
(
|𝜂 𝑗 | ≥ 𝑡 ·

√︃
Var(𝜂 𝑗 )

)
= P

(
|𝜂 𝑗 | ≥ 𝑡 · 𝜎

√
𝑘

)
≤ 1

𝑡2
,

where 𝑡 > 0 is a scaling factor. This inequality bounds the probabil-

ity that the noise term 𝜂 𝑗 exceeds a threshold proportional to its

standard deviation. For example, setting 𝑡 =
√
𝑘 yields:

P
(
|𝜂 𝑗 | ≥ 𝜎

)
≤ 1

𝑘
.

This means that with probability at least 1 − 1

𝑘
, the noise term 𝜂 𝑗 is

bounded by 𝜎 𝑗 . As 𝑘 (the number of pseudo-relevant documents)

increases, this bound becomes tighter, ensuring that 𝜂 𝑗 remains

small. With error bound:

|𝑟 𝑗 (𝑞 𝑗 , 𝑐 𝑗 ) − 𝑞 𝑗𝑠 𝑗 | = |𝑞 𝑗𝜂 𝑗 | ≤ |𝑞 𝑗 |
√︂

𝜎2

𝑘
(w.h.p. via Chebyshev)

3.2 Improved Weighted Average
The original DIME approach aggregates the top-𝑘 document em-

beddings by a simple (uniform) average, which gives an effective

signal strength of

𝛼
uniform

=
1

𝑘

𝑘∑︁
𝑖=1

𝛼 (𝑖 ) .

In contrast, our improved approach uses a weighted average:

𝛼
weighted

=

𝑘∑︁
𝑖=1

𝑤 (𝑖 ) 𝛼 (𝑖 ) ,

where the weights 𝑤 (𝑖 ) ∈ [0, 1] are computed from the query-

document similarity scores. For example, we may set

𝑤 (𝑖 ) = 𝜎 (𝑟 ) (𝑖 ) | 𝑟 =

{
𝑟 (𝑞, 𝑑 (𝑖 ) )

}𝑘
𝑖=1

, 𝜎 (𝑧) (𝑖 ) = 𝑒𝑧𝑖/𝜏∑𝑘
ℓ=1

𝑒𝑧ℓ /𝜏
(3)

where 𝜎 is the softmax function with a temperature parameter

𝜏 > 0 that controls the sharpness of the weight distribution. Under

the assumption that documents with higher relevance scores tend

to exhibit a stronger expression of the core information need (i.e.,

larger 𝛼 (𝑖 )
), it is reasonable to expect that

𝛼
weighted

> 𝛼
uniform

,

thereby emphasizing the more informative documents in the ag-

gregated signal.

Noise Analysis of the Weighted Average
Following Eq. 1, the aggregated noise term for theweighted centroid

becomes

𝜂𝑤,𝑗 =

𝑘∑︁
𝑖=1

𝑤 (𝑖 ) 𝜖 (𝑖 )
𝑗

.

Because the weights 𝑤 (𝑖 )
depend on the document scores (and

hence potentially on the noise), we use the law of total expectation

to verify that the weighted noise remains unbiased. Specifically,

E[𝜂𝑤,𝑗 ] = E

[
𝑘∑︁
𝑖=1

𝑤 (𝑖 ) 𝜖 (𝑖 )
𝑗

]
=

𝑘∑︁
𝑖=1

E
[
𝑤 (𝑖 ) 𝜖 (𝑖 )

𝑗

]
=

𝑘∑︁
𝑖=1

E
[
E
[
𝑤 (𝑖 ) 𝜖 (𝑖 )

𝑗
| 𝑤 (𝑖 )

] ]
(by law of total expectation)

=

𝑘∑︁
𝑖=1

E
[
𝑤 (𝑖 ) E

[
𝜖
(𝑖 )
𝑗

| 𝑤 (𝑖 )
] ]

=

𝑘∑︁
𝑖=1

E
[
𝑤 (𝑖 ) · 0

]
= 0. (since E[𝜖 (𝑖 )

𝑗
| 𝑤 (𝑖 ) ] = 0)

Thus, even if 𝑤 (𝑖 )
and 𝜖

(𝑖 )
𝑗

are dependent, the expected value of

the aggregated noise is zero, and the variance is

Var(𝜂𝑤,𝑗 ) = 𝜎2

𝑘∑︁
𝑖=1

(
𝑤 (𝑖 )

)
2

.

Signal-to-Noise Ratio comparison Via Chebyshev’s inequality,

the error bound for the uniform and weighted averages are

|𝑞 𝑗𝜂 𝑗 | ≲ |𝑞 𝑗 |
√︂

𝜎2

𝑘
, |𝑞 𝑗𝜂𝑤,𝑗 | ≲ |𝑞 𝑗 |

√√√
𝜎2

𝑘∑︁
𝑖=1

(
𝑤 (𝑖 ) )2 .

We can define the per-dimension SNR as:

SNR
uniform

=
|𝑞 𝑗 𝑠 𝑗 | 𝛼uniform

𝜎/
√
𝑘

, SNR
weighted

=
|𝑞 𝑗 𝑠 𝑗 | 𝛼weighted

𝜎

√︃∑𝑘
𝑖=1

(
𝑤 (𝑖 ) )2 .

Even if the weighted average introduces a slightly larger noise vari-

ance (since

√︃∑𝑘
𝑖=1

(
𝑤 (𝑖 ) )2 ≥ 1√

𝑘
), the improvement in the effective

signal 𝛼
weighted

often more than compensates. In particular, if

𝛼
weighted√︃∑𝑘
𝑖=1

(
𝑤 (𝑖 ) )2 > 𝛼

uniform

√
𝑘,

then we obtain

SNR
weighted

> SNR
uniform

.
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For instance, let’s assume that the signal strength is proportional

to the weight (as it is, in turn, proportional to the score), i.e.,

𝛼 (𝑖 ) = 𝑐 𝑤 (𝑖 )
with 𝑐 > 0.

Then,

𝛼
uniform

=
𝑐

𝑘
, 𝛼

weighted
= 𝑐

𝑘∑︁
𝑖=1

(
𝑤 (𝑖 )

)
2

,

since

∑𝑘
𝑖=1

𝑤 (𝑖 ) = 1. The SNR condition then reduces to

𝑐
∑𝑘
𝑖=1

(
𝑤 (𝑖 )

)
2√︃∑𝑘

𝑖=1

(
𝑤 (𝑖 ) )2 >

𝑐
√
𝑘
⇒

√√√
𝑘∑︁
𝑖=1

(
𝑤 (𝑖 ) )2 >

1

√
𝑘
⇒

𝑘∑︁
𝑖=1

(
𝑤 (𝑖 )

)
2

>
1

𝑘
.

This inequality is strict whenever the weights are not uniformly

distributed—that is, when the aggregation concentrates more on

the top documents. To ensure this, we use a low 𝜏 (temperature) in

the softmax (Eq. 3), in fact, as 𝜏 decreases, the weight distribution

becomes more concentrated, which can further improve the SNR if

the top documents are significantly more relevant.

4 DIME reproduction
We begin by reproducing the core results of DIME, specifically

focusing on two variants: PRF DIME and LLM DIME. To ensure

fidelity to the original study, we adopt the same datasets, models,

parameters, and overall configuration described by the original au-

thors. These details–along with the precise experimental setup–are

presented in the following section. By closely mirroring the original

design, the aim is to validate our implementation and confirm that

the reproduced results align with those initially reported.

4.1 Experimental Setup
In this section, we detail the setup used to reproduce the main

results of DIME, focusing on the original embeddingmodels, datasets,
retrieval algorithms, and evaluation metrics.
Embedding Models. We investigate the same dense encoders:

• ANCE [42] uses hard-negative mining during contrastive

learning to improve robustness.

• Contriever [14] emphasizes unsupervised contrastive pre-

training, aiming for strong zero-shot generalization.

• TAS-B [13] employs distillation-based training with topic-

aware sampling.

All models produce 768-dimensional embeddings (unless otherwise

stated) and are optimized for dot-product.

Datasets. MS Marco passage[4], We use two primary datasets:

• MS MARCO Passage [25] is a large-scale passage retrieval
benchmark containing real-world queries from Bing’s search

logs. This collection is commonly used to fine-tune and eval-

uate dense retrieval methods. We also utilize the TREC Deep

Learning (DL) tracks 2019 and 2020, as well as the Hard

subset, to gauge performance in more challenging query

scenarios.

• TRECRobust (a.k.a. Robust ’04) uses documents from TREC

disks 4 and 5 [36, 37], minus the Congressional Record. The

Robust retrieval track was designed to emphasize “difficult”

or poorly performing topics, thereby testing a system’s con-

sistency and resilience.

Implementation. We index the document embeddings using the

Flat index within the FAISS library, which stores all vectors in

raw form (i.e., without compression) and supports efficient exhaus-

tive nearest neighbor searches. By default, we retrieve the top 𝑘

candidate passages per query; unless otherwise specified, 𝑘 = 10.

Distances or similarities between the query and document em-

beddings are computed by an inner product. We reproduced both

DIME’s approaches:

• The pseudo-relevance feedback variant, {𝑢
PRF@𝑘 , by adjust-

ing the query vector (or its dimensions) via centroid-based

feedback from the top 𝑘 retrieved documents.

• We also investigate the LLM-based estimator (𝑢LLM), which

relies on synthetic passages generated by a language model

for dimensional scoring.

Relatively to the latter, we perform LLM-based answer generation

of each of the queries evaluated using the official GPT-4 API, setting

the generation seed as provided in the reference implementation.

Measures.We evaluate retrieval performance using the standard

nDCG@10 metric, which places emphasis on ranking high-quality

documents near the top of the results list. In particular, we report

nDCG@10 across various queries from each collection to assess

consistency and effectiveness in both in-domain (MS MARCO) and

out-of-domain (TREC Robust) scenarios.

Hardware. All experiments are conducted on a computational

cluster equipped with eight NVIDIA A100 GPUs. Each job runs on

a single GPU unless otherwise specified. Our implementation is

primarily in Python, making use of PyTorch for model loading and

FAISS for efficient similarity search.

4.2 Results
Table 1 reports nDCG@10 scores for our main reproduction of

DIME’s original results, as well as a comparison to the originally

reported figures. We present outcomes on four test sets—DL ’19, DL
’20, DL Hard, and Robust ’04—and group results by encoder (ANCE,

Contriever, TAS-B). Within each group, we show performance for

eachDIME instantiation (𝑢PRF@1,𝑢PRF@2,𝑢PRF@5, and𝑢LLM) across

varying proportions of retained dimensions (e.g., 0.2, 0.4, 0.6, 0.8, 1).

Overall, the reproduced results closely align with those initially

reported, demonstrating the stability of DIME under different ex-

perimental conditions. Specifically:

• PRF-based DIMEs (𝑢
PRF@𝑘 ): These consistently improve

over the no-filtering baseline in most settings, with the

largest gains typically observed on the TREC Robust col-

lection, suggesting that pseudo-relevance feedback can be

particularly beneficial for difficult queries.

• LLM-based DIME (𝑢𝐿𝐿𝑀 ): While computationally more

expensive (due to the generation of synthetic passages), it

often yields the best or near-best performance among the

DIME variants. Although relying on a third-party API-based

model to generate the synthetic documents, we were able to

reproduce the improvements.

• Encoder Differences: ANCE tends to benefit moderately

from dimension filtering; Contriever and TAS-B show es-

pecially strong improvements on collections like DL Hard

and Robust ’04, potentially thanks to how their pre-training
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Table 1: Comparison of nDCG@10 performance across TREC Deep Learning 2019, 2020, Hard, and Robust 2004 datasets,
showing DIME reproduction and original DIME results for ANCE, Contriever, and TAS-B under varying parameter settings.

DL ’19 DL ’20 DL HD RB ’04

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DIME Reproduction Results

A
N
C
E 𝑢𝑃𝑅𝐹@1

.082 .553 .638 .650

.643

.176 .539 .612 .644

.644

.055 .272 .331 .329

.326

.061 .259 .312 .330

.327
𝑢𝑃𝑅𝐹@2

.089 .565 .637 .649 .166 .543 .612 .643 .046 .268 .323 .331 .059 .251 .312 .325

𝑢𝑃𝑅𝐹@5
.085 .563 .635 .648 .159 .543 .614 .644 .050 .276 .335 .332 .056 .247 .311 .329

𝑢𝐿𝐿𝑀
.091 .548 .660 .663 .149 .544 .634 .651 .033 .291 .340 .344 .065 .258 .332 .337

C
on

tr
ie
ve
r 𝑢𝑃𝑅𝐹@1

.675 .683 .686 .689

.674

.711 .704 .702 .693

.672

.388 .386 .388 .390

.377

.484 .493 .495 .494

.466
𝑢𝑃𝑅𝐹@2

.673 .675 .679 .685 .683 .685 .685 .685 .394 .395 .387 .389 .493 .497 .498 .494

𝑢𝑃𝑅𝐹@5
.649 .664 .678 .683 .695 .686 .690 .685 .377 .378 .387 .387 .477 .479 .480 .476

𝑢𝐿𝐿𝑀
.729 .741 .751 .749 .723 .720 .714 .712 .408 .406 .414 .405 .497 .505 .499 .498

TA
S-
B 𝑢𝑃𝑅𝐹@1

.722 .732 .734 .729

.718

.700 .702 .711 .705

.684

.359 .374 .383 .375

.376

.433 .449 .450 .455

.447
𝑢𝑃𝑅𝐹@2

.719 .731 .731 .725 .687 .698 .709 .707 .352 .373 .373 .374 .460 .469 .467 .467

𝑢𝑃𝑅𝐹@5
.712 .725 .721 .724 .686 .685 .694 .697 .369 .385 .389 .395 .462 .467 .469 .469

𝑢𝐿𝐿𝑀
.757 .755 .757 .759 .708 .707 .717 .718 .389 .413 .418 .405 .456 .471 .476 .475

Original DIME Results

A
N
C
E 𝑢𝑃𝑅𝐹@1

.082 .559 .644 .658

.643

.175 .549 .616 .648

.644

.042 .266 .326 .332

.325

.074 .284 .343 .357

.362
𝑢𝑃𝑅𝐹@2

.095 .567 .637 .652 .176 .542 .612 .647 .051 .274 .325 .328 .066 .273 .341 .356

𝑢𝑃𝑅𝐹@5
.088 .568 .633 .647 .155 .545 .613 .645 .054 .274 .330 .330 .058 .263 .334 .359

𝑢𝐿𝐿𝑀
.081 .569 .651 .663 .171 .537 .629 .655 .042 .284 .339 .348 .078 .280 .354 .371

C
on

tr
ie
ve
r 𝑢𝑃𝑅𝐹@1

.676 .685 .686 .689

.675

.711 .703 .701 .692

.672

.396 .395 .387 .389

.377

.512 .522 .527 .523

.499
𝑢𝑃𝑅𝐹@2

.672 .675 .679 .685 .682 .685 .687 .685 .395 .391 .394 .399 .500 .513 .517 .515

𝑢𝑃𝑅𝐹@5
.646 .664 .680 .681 .698 .687 .690 .686 .379 .385 .383 .387 .504 .513 .511 .512

𝑢𝐿𝐿𝑀
.720 .742 .752 .750 .719 .722 .725 .710 .392 .409 .414 .412 .527 .539 .539 .530

TA
S-
B 𝑢𝑃𝑅𝐹@1

.719 .731 .733 .729

.718

.697 .699 .709 .703

.684

.349 .376 .374 .375

.376

.458 .475 .475 .471

.453
𝑢𝑃𝑅𝐹@2

.718 .733 .731 .726 .684 .698 .710 .707 .359 .377 .382 .391 .465 .474 .476 .470

𝑢𝑃𝑅𝐹@5
.709 .721 .719 .721 .683 .687 .693 .695 .364 .371 .384 .381 .462 .460 .462 .464

𝑢𝐿𝐿𝑀
.747 .749 .760 .755 .708 .706 .710 .712 .385 .397 .401 .397 .462 .487 .488 .485

strategy helps handle out-of-distribution queries and have a

better separation among topics in their latent space.

• Robust ’04: For this dataset, our experiments show slightly

lower retrieval quality for both the baseline as well as the

results with fewer retained dimensions. What is important

to notice though is that the reducing dimensions improves

the baseline in the same way as reported by the original

authors, which indicates that the offset could derive from

minor differences in the settings used.

In summary, Table 1 affirms that DIME approaches can signif-

icantly bolster dense retrieval effectiveness, particularly in chal-

lenging or out-of-domain settings, and that our replication setup

matches the trends reported in the original study.

5 Generalization Study
In this section, we expand the scope of DIME’s evaluation to inves-

tigate its broader applicability beyond the original settings. Specifi-

cally, we test models trained with different objectives (e.g., cosine

similarity), explore embeddings that follow a Matryoshka structure,
and examine higher-dimensional representations. We further eval-

uate DIME on new datasets—including zero-shot scenarios—and

experiment with various LLMs beyond GPT-4. By diversifying both

the model and dataset landscapes, we aim to determine whether

DIME’s reported benefits remain robust across a range of architec-

tures and configurations, thereby shedding light on its potential

for broader deployment.

5.1 Experimental Setup
Embedding Models. To broaden the scope of our findings, we

test:

• Multilingual E51 [38, 39], e5-large in this paper, handles

cross-lingual queries and documents for multilingual re-

trieval scenarios.

• Mxbai-Embed Large2, mxbai in this paper, targets robust,

versatile embeddings for downstream tasks.

• Snowflake-Arctic Embed3 [46], arctic-v2 in this paper,

leverages an advanced training curriculum to produce strong

general-purpose embeddings.

• BAAI-BGE-M34 [24, 41], bge-m3 in this paper, combines

balanced representations for both short and long passages,

demonstrating robustness across diverse benchmarks.

LLMs. We evaluate LLM DIME (described in Section 2) across a

variety of LLMs:

• GPT-4 andGPT-4o [1, 15], OpenAI’s state-of-the-art models,

are the version used in the original DIME framework and its

latest release, respectively;

• Qwen 2.5 [44], an open source multilingual general pur-

pose family of LLMs showcasing performance comparable

to proprietary models, which we use in its 32B, 7B and 3B

parameters variants;

1
https://huggingface.co/intfloat/multilingual-e5-large

2
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1

3
https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0

4
https://huggingface.co/BAAI/bge-m3

https://huggingface.co/intfloat/multilingual-e5-large
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0
https://huggingface.co/BAAI/bge-m3
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• Llama 3.1 and 3.2 [9], similarly to Qwen, a family of open

source multilingual models, which we use in its 8B and 3B

parameters variants;

• DeepSeek R1 [12], a family of models trained for improved

reasoning capabilities; we use the distilled 32B and 7B pa-

rameters Qwen-based variants.

For all models, temperature is set to 0.5 and top_p is set to 0.7 dur-
ing generation. For models with reasoning capabilities the thinking

tokens have been removed from the generated answer.

Datasets.We extended our evaluation to the zero-shot BEIR bench-

mark [32], excluding the four corpora that are not publicly available

to ensure reproducibility.

Hardware. For the generalization study, we build on the experi-

mental setup used to replicate the results detailed in Section 4.1.

Inference on open source LLMs is performed using vLLM [18], with

32B models quantized to 4 bits to efficiently fit within the memory

constraints of a single GPU.

5.2 Generalization to other models
To verify whether our Dimension Importance Estimation (DIME)

strategy applies beyond the specific encoders described in ear-

lier sections, we extend our analysis to a range of other dense

retrieval models, as summarized in Table 2. Each model brings dis-

tinct training objectives or domain focuses; for example, bge-m3

aims at broader domain coverage, mxbai targets multilingual or

multi-domain robustness, e5-large emphasizes multilingual embed-

dings, and arctic-v2 seeks strong general-purpose representations

through advanced curriculum design.

Despite these architectural and training variations, the table

reveals several consistent patterns when pseudo-relevance feedback

(PRF) is used to guide dimension filtering. First, all models generally

achieve noticeable improvements in nDCG@10 by discarding a

subset of dimensions, mirroring earlier trends observed with ANCE,

Contriever, and TAS-B. Second, the exact fraction of coordinates

retained (e.g., 40–60%) can slightly shift among models, yet in every

case there appears to be a sweet spot that meaningfully outperforms

using the full set of latent dimensions. Third, models tested in out-

of-domain or more challenging settings—such as TREC Robust ’04

or the DL HD subset—continue to benefit from dimension filtering,

suggesting that DIME’s focus on query-relevant coordinates helps

counteract domain mismatches or inherently difficult topics.

Overall, these additional experiments support the conclusion

that DIME is broadly applicable across diverse embedding architec-

tures. Whether the encoder is multilingual, specialized for certain

domains, or generically trained, adaptively pruning dimensions ap-

pears to reduce noise and sharpen the representation, thus enhanc-

ing retrieval performance in both familiar and zero-shot scenarios.

In contrast to the models tested in the original work, all models

adopted in this section, with the exception of BAAI-BGE-M3, are

trained to optimize cosine similarity. In order to leverage the dot-

product as a signal estimation mechanism, the produced vectors

have been normalized. It is interesting to note how dimension

masking, which affects vector normalization, does not cause harm

to the retrieval quality. This is due to the way DIME performs

dimension importance estimation, dropping the dimensions with a

low score.

5.3 Generalization to Zero-Shot Datasets
While earlier experiments focused on in-domain and closely related

benchmarks, many real-world applications involve queries and con-

tent that deviate from a model’s training distribution. We therefore

assess whether DIME can enhance retrieval in zero-shot scenarios.
In particular, we use the BEIR benchmark [32], which comprises

diverse IR tasks such as fact verification (Fever), argumentative

retrieval (ArguAna), and financial QA (FiQA).

Table 3 reports nDCG@10 scores across 13 BEIR tasks. Each row

corresponds to a dataset and pseudo-relevance feedback variant

(𝑢𝑃𝑅𝐹@1
, 𝑢𝑃𝑅𝐹@2

, or 𝑢𝑃𝑅𝐹@5
), while columns indicate the fraction

of dimensions retained (0.2, 0.4, 0.6, 0.8) for each model. Several

consistent trends emerge:

• Cross-Dataset Robustness. Even though the encoderswere
trained on unrelated data, dimension pruning often boosts

performance. For instance, on c-fever, TAS-B sees notice-

able gains when moving from 0.8 to 0.2 retained dimensions

under 𝑢𝑃𝑅𝐹@1
.

• Varying Optimal Prune Rates. Different tasks favor dif-
ferent levels of pruning. On arguana, TAS-B achieves its

highest nDCG@10 at around 40% or 60% dimension reten-

tion, whereas on fiqa, a more aggressive prune rate (e.g.,

20%) can yield stronger gains with 𝑢𝑃𝑅𝐹@2
or 𝑢𝑃𝑅𝐹@5

.

• Minimal Regression on Strong Baselines. Tasks such
as quora and nq show only marginal changes because both

models already perform strongly out-of-the-box. In these

cases, dimension pruning neither substantially helps nor

harms, indicating a relatively safe application of DIME.

These results suggest that DIME’s benefits generalize beyond the

domain of its original training data. In particular, by focusing on

the coordinates that most strongly align with the pseudo-relevant

feedback, DIME can reduce noisy dimensions even when the query

or document distribution shifts dramatically. This finding is partic-

ularly valuable for applications that must handle diverse tasks or

emerging topics without specialized training or fine-tuning.

5.4 LLM-Based Filtering with Different Models
Table 4 reports nDCG@10 scores for various Large Language Mod-

els (LLMs) used to generate synthetic text for LLM-based DIME.

The experiments span two encoders (TAS-B and arctic-v2) over

three TREC Deep Learning collections (DL ’19, DL ’20, DL HD),

with each row representing a distinct LLM. Our selection covers

high-parameter, proprietary systems (GPT-4, GPT-4o) as well as

mid-scale open-source alternatives (Qwen 2.5, Llama 3.x) and an

advanced reasoning models (Distilled DeepSeek R1).

Across collections, most LLMs yield competitive results. GPT-4

and GPT-4o generally rank at or near the top, although the optimal

fraction of retained dimensions varies with the dataset and encoder.

For instance, GPT-4 with TAS-B attains peak performance on DL

’20 at 0.6 or 0.8 retained dimensions, while on DL ’19 the gains

saturate around 0.4–0.6. This variability underscores that the ideal

level of dimension pruning depends on both the underlying encoder

and the query distribution.

In general, relatively small open-source models such as Llama-

3.18B can be used as an open and cheaper alternative to GPT-4.

When queries are harder—as in DL HD—larger (but still open)
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Table 2: nDCG@10 performance for the bge-m3, mxbai, e5-large, and arctic-v2 retrieval models, showing comparisons across
TREC Deep Learning 2019, 2020, Hard, and Robust 2004 under different under varying parameter settings.

DL ’19 DL ’20 DL HD RB ’04

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

bg
e-
m
3 𝑢𝑃𝑅𝐹@1

.700 .700 .699 .696

.668

.692 .708 .711 .706

.677

0.358 .359 .365 .362

.335

.427 .443 .444 .444

.424
𝑢𝑃𝑅𝐹@2

.687 .689 .694 .690 .705 .708 .706 .701 0.354 .359 .358 .363 .434 .443 .442 .442

𝑢𝑃𝑅𝐹@5
.696 .700 .702 .688 .677 .680 .685 .685 .343 .358 .360 .362 .428 .430 .433 .435

𝑢𝐿𝐿𝑀
.749 .737 .733 .729 .739 .746 .739 .733 .381 .396 .384 .379 .451 .465 .465 .466

m
xb
ai

𝑢𝑃𝑅𝐹@1
.714 .726 .722 .722

.694

.695 .710 .712 .709

.705

.376 .391 .393 .390

.381

.477 .479 .489 .492

.483
𝑢𝑃𝑅𝐹@2

.722 .724 .722 .718 .710 .717 .722 .723 .386 .401 .407 .405 .486 .493 .497 .496

𝑢𝑃𝑅𝐹@5
.706 .716 .718 .715 .727 .732 .721 .717 .393 .403 .404 .402 .488 .489 .492 .492

𝑢𝐿𝐿𝑀
.752 .763 .749 .737 .732 .734 .735 .729 .407 .407 .401 .400 .486 .493 .490 .484

e5
-l
ar
ge 𝑢𝑃𝑅𝐹@1

.721 .748 .744 .747

.719

.701 .730 .744 .740

.723

.385 .384 .397 .402

.379

.440 .459 .470 .469

.450
𝑢𝑃𝑅𝐹@2

.719 .740 .739 .734 .712 .741 .741 .730 .369 .374 .393 .394 .455 .465 .476 .471

𝑢𝑃𝑅𝐹@5
.717 .733 .735 .732 .710 .727 .728 .730 .368 .374 .385 .375 .461 .472 .481 .468

𝑢𝐿𝐿𝑀
.731 .760 .748 .746 .711 .735 .738 .735 .375 .386 .398 .398 .442 .474 .482 .478

ar
ct
ic
-v
2 𝑢𝑃𝑅𝐹@1

.740 .742 .737 .739

.725

.735 .743 .746 .747

.733

.406 .407 .406 .408

.381

.492 .499 .500 .500

.466
𝑢𝑃𝑅𝐹@2

.740 .739 .736 .741 .732 .741 .744 .746 .368 .399 .398 .400 .499 .503 .501 .497

𝑢𝑃𝑅𝐹@5
.739 .743 .735 .734 .739 .739 .744 .746 .399 .399 .400 .395 .491 .492 .494 .494

𝑢𝐿𝐿𝑀
.750 .745 .742 .736 .711 .715 .719 .708 .409 .410 .405 .395 .470 .477 .477 .478

models like Qwen2.532B tend to yield better results, suggesting

that GPT-4 is not necessary overall. Although larger models (e.g.,

GPT-4, Qwen2.532B, Llama-3.18B) typically achieve slightly higher

metrics than their smaller counterparts (e.g., Qwen2.53B, Llama-

3.23B), architectural efficiency or domain adaptation can sometimes

compensate for differences in parameter count.

With regard to DeepSeek R1, it produces shorter responses that

contain less semantic content useful for discriminating among di-

mensions, which leads to slightly lower performance compared to

other models.

Finally, while GPT-4 frequently delivers the highest effectiveness,

its higher latency and computational costs suggest that mid-scale

open-source models offer a favorable trade-off between retrieval

gains and inference speed.

6 Improvements
In this section, we present the proposed improvements to DIME.

6.1 Softmax-Weighted Centroid (SWC)
In the original DIME formulation, the centroid of the top-𝑘 pseudo-

relevant documents is computed as the simple arithmetic mean

of their embedding vectors. This centroid is then used to estimate

the importance of each dimension (cf. Section 2). However, in Sec-

tion 3.2 we show that the presence of varying relevance scores

may suggest that not all documents should contribute equally. To

address this, we propose a new approach called Softmax-Weighted
Centroid (SWC).

Instead of averaging the top-𝑘 document representations with

uniform weights, we leverage a temperature-scaled softmax func-

tion to assign higher weights to more relevant matches. Specifically,

let M be the set of top-ranked matches for a given query, each

match 𝑚 ∈ M comprising an embedding v𝑚 and a scalar rele-

vance score 𝑟𝑚 . Denoting V as the collection of embeddings and

r = {𝑟𝑚}𝑘𝑚=1
as the corresponding scores, we compute the centroid

as c =
∑𝑘
𝑚=1

(
𝛼𝑚 v𝑚

)
where 𝛼𝑚 = 𝜎 (r)𝑚 . We use a low 𝜏 (temper-

ature of the softmax, defined in Eq. 3), in fact, as 𝜏 decreases, the

weight distribution becomes sharper, which can further improve

the SNR if the top documents are significantly more relevant.

Table 5 key properties:

• Score-Aware Averaging: Unlike uniform averaging, SWC

raises the contribution of documents with higher retrieval

scores, making the final centroid more representative of

strongly relevant matches.

• Temperature-Scaling: The temperature 𝜏 > 0 controls how

sharply the weights concentrate on high-scoring documents.

A small 𝜏 emphasizes top-scoring matches, while a large 𝜏

yields a nearly uniform distribution.

• Flexibility and Compatibility: The SWC approach can be

easily integrated with any dimension-importance estimator

that uses a centroid (e.g., PRF DIME), by simply replacing

the arithmetic mean with the score-weighted centroid.

6.2 DIME-based Reranking
Table 6 illustrates how DIME can be leveraged as a score refinement

technique applied directly to the top 100 documents retrieved by

the initial query. This approach is particularly justified by the first

query’s high recall, which ensures that themost relevant documents

are already present in the initial retrieval set. By refining scores

within this restricted subset, DIME effectively enhances ranking

quality while maintaining computational efficiency, as it avoids the

need for a second query which might increase latency. This shows

the practical applicability of the method in real-world retrieval

pipelines, where balancing effectiveness and efficiency is crucial.

7 Conclusion
In this work, we provided a comprehensive study of Dimension IM-

portance Estimation (DIME), confirming its effectiveness for dense

retrieval through both replication of prior experiments and exten-

sive new evaluations. Our results show that selectively pruning
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Table 3: nDCG@10 performance on the BEIR benchmark.

TAS-B arctic-v2

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

a
r
g
u
a
n
a 𝑢𝑃𝑅𝐹@1

.366 .361 .351 .340

.321

.442 .441 .440 .438

.431𝑢𝑃𝑅𝐹@2
.332 .333 .331 .331 .428 .429 .430 .431

𝑢𝑃𝑅𝐹@5
.319 .319 .320 .322 .420 .423 .424 .426

c
-
f
e
v
e
r 𝑢𝑃𝑅𝐹@1

.240 .241 .240 .241

.228

.368 .381 .387 .394

.418𝑢𝑃𝑅𝐹@2
.244 .239 .238 .237 .386 .396 .401 .405

𝑢𝑃𝑅𝐹@5
.252 .246 .244 .242 .398 .407 .410 .413

d
b
p
e
d
i
a 𝑢𝑃𝑅𝐹@1

.368 .375 .376 .379

.384

.416 .425 .431 .434

.434𝑢𝑃𝑅𝐹@2
.377 .380 .379 .380 .425 .432 .435 .436

𝑢𝑃𝑅𝐹@5
.377 .379 .377 .382 .428 .433 .439 .438

f
e
v
e
r

𝑢𝑃𝑅𝐹@1
.665 .686 .694 .697

.700

.910 .912 .913 .914

.915𝑢𝑃𝑅𝐹@2
.686 .712 .717 .717 .909 .914 .914 .915

𝑢𝑃𝑅𝐹@5
.682 .720 .727 .725 .901 .908 .910 .913

fi
q
a

𝑢𝑃𝑅𝐹@1
.279 .286 .293 .295

.300

.441 .446 .450 .452

.454𝑢𝑃𝑅𝐹@2
.281 .283 .287 .288 .440 .448 .448 .449

𝑢𝑃𝑅𝐹@5
.273 .275 .281 .289 .428 .437 .438 .440

h
o
t
p
o
t
q
a 𝑢𝑃𝑅𝐹@1

.525 .540 .548 .555

.584

.636 .647 .653 .658

.682𝑢𝑃𝑅𝐹@2
.550 .557 .563 .567 .657 .663 .666 .668

𝑢𝑃𝑅𝐹@5
.525 .547 .555 .561 .650 .659 .665 .667

n
f
c
o
r
p
u
s 𝑢𝑃𝑅𝐹@1

.318 .325 .327 .327

.319

.364 .369 .368 .368

.352𝑢𝑃𝑅𝐹@2
.321 .317 .323 .325 .367 .367 .369 .366

𝑢𝑃𝑅𝐹@5
.308 .316 .321 .320 .357 .360 .363 .361

n
q

𝑢𝑃𝑅𝐹@1
.445 .453 .458 .461

.463

.619 .625 .628 .630

.637𝑢𝑃𝑅𝐹@2
.453 .457 .457 .460 .617 .627 .628 .630

𝑢𝑃𝑅𝐹@5
.449 .452 .454 .458 .612 .620 .626 .631

q
u
o
r
a

𝑢𝑃𝑅𝐹@1
.824 .825 .826 .828

.835

.883 .885 .886 .886

.888𝑢𝑃𝑅𝐹@2
.822 .821 .823 .826 .884 .886 .887 .887

𝑢𝑃𝑅𝐹@5
.801 .804 .811 .818 .871 .878 .881 .883

s
c
i
d
o
c
s 𝑢𝑃𝑅𝐹@1

.156 .151 .151 .152

.149

.204 .206 .206 .207

.203𝑢𝑃𝑅𝐹@2
.152 .147 .146 .146 .205 .208 .207 .208

𝑢𝑃𝑅𝐹@5
.148 .143 .141 .142 .201 .206 .206 .206

s
c
i
f
a
c
t 𝑢𝑃𝑅𝐹@1

.619 .624 .626 .627

.643

.692 .694 .699 .701

.710𝑢𝑃𝑅𝐹@2
.622 .621 .625 .626 .703 .712 .707 .710

𝑢𝑃𝑅𝐹@5
.597 .610 .612 .617 .683 .700 .696 .701

w
-
t
o
u
c
h
e 𝑢𝑃𝑅𝐹@1

.163 .166 .161 .166

.163

.249 .251 .252 .253

.259𝑢𝑃𝑅𝐹@2
.154 .168 .167 .165 .243 .249 .256 .254

𝑢𝑃𝑅𝐹@5
.161 .163 .165 .162 .250 .252 .253 .257

t
-
c
o
v
i
d 𝑢𝑃𝑅𝐹@1

.434 .467 .478 .498

.481

.826 .833 .831 .833

.834𝑢𝑃𝑅𝐹@2
.456 .489 .501 .507 .829 .831 .835 .843

𝑢𝑃𝑅𝐹@5
.484 .503 .510 .511 .825 .839 .838 .843

low-relevance coordinates consistently enhances nDCG@10 across

varied datasets and encoders, including larger open-source models

and challenging zero-shot tasks.

We further offered theoretical insights by framing DIME as a de-

noising mechanism, where dimension filtering reduces embedding

noise while preserving salient semantic signals. This interpretation

clarifies why dimension pruning boosts retrieval in practice and

guided our development of extensions such as attention-inspired

PRF strategies and dynamic retention policies. Notably, DIME op-

erates without any model re-training, making it a lightweight yet

powerful addition to existing pipelines.

Future work may explore more adaptive mechanisms for select-

ing pruning rates per query, integrate multi-turn feedback, or apply

DIME to specialized retrieval tasks (e.g., cross-modal search). We

Table 4: nDCG@10 scores for various LLMs (GPT-4, GPT-4o,
Qwen, Llama, and DeepSeek) used to generate synthetic text
for LLM-basedDIME, evaluated onTRECDeep Learning 2019,
2020, and Hard tasks with TAS-B and arctic-v2 retrievers.

DL ’19 DL ’20 DL HD

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

TA
S-
B

GPT-4 .757 .755 .757 .759 .708 .707 .717 .718 .389 .413 .418 .405

GPT-4o .749 .758 .756 .754 .703 .699 .700 .705 .393 .393 .391 .392

Qwen23𝐵 .698 .733 .744 .741 .687 .689 .696 .694 .381 .394 .401 .400

Qwen27𝐵 .717 .730 .745 .743 .695 .691 .692 .695 .337 .363 .381 .386

Qwen232𝐵 .743 .756 .754 .749 .694 .702 .708 .705 .398 .390 .401 .399

Llama-3.23𝐵 .712 .726 .731 .731 .692 .695 .703 .697 .358 .358 .371 .378

Llama-3.18𝐵 .750 .756 .758 .750 .695 .711 .708 .702 .375 .383 .392 .388

DeepSeek32𝐵 .710 .726 .730 .734 .677 .695 .702 .699 .377 .387 .393 .396

DeepSeek7𝐵 .687 .712 .713 .718 .659 .677 .687 .688 .361 .372 .374 .384

ar
ct
ic
-v
2

GPT-4 .750 .745 .742 .736 .711 .715 .719 .708 .409 .410 .405 .395

GPT-4o .735 .746 .735 .725 .703 .707 .704 .701 .390 .390 .392 .386

Qwen23𝐵 .723 .723 .721 .723 .675 .684 .680 .679 .391 .394 .389 .386

Qwen27𝐵 .728 .734 .728 .722 .701 .701 .707 .701 .361 .382 .380 .377

Qwen232𝐵 .743 .741 .731 .726 .702 .696 .697 .692 .393 .396 .384 .383

Llama-3.23𝐵 .721 .724 .712 .706 .689 .698 .697 .690 .375 .372 .368 .371

Llama-3.18𝐵 .746 .750 .738 .726 .711 .708 .699 .692 .404 .395 .390 .389

DeepSeek32𝐵 .722 .727 .723 .722 .703 .695 .693 .689 .386 .393 .386 .383

DeepSeek7𝐵 .670 .681 .677 .670 .654 .659 .668 .652 .362 .368 .374 .374

Table 5: nDCG@10 performance on TREC Deep Learning
2019, 2020, and Hard tasks using Softmax-Weighted average.

DL ’19 DL ’20 DL HD

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

𝑢𝑃𝑅𝐹@10

TAS-B .709 .711 .721 .720 .676 .684 .686 .693 .352 .370 .377 .378

arctic-v2 .711 .725 .727 .726 .725 .729 .737 .736 .393 .390 .398 .395

𝑆𝑊𝐶𝑃𝑅𝐹@10

TAS-B .725 .733 .732 .727 .708 .710 .718 .713 .370 .384 .386 .380

arctic-v2 .726 .738 .727 .729 .731 .734 .737 .737 .399 .399 .400 .395

Table 6: nDCG@10 performance on TREC Deep Learning
2019, 2020, and Hard tasks when DIME is used as a reranker.

DL ’19 DL ’20 DL HD

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Original DIME

TAS-B .712 .725 .721 .724 .686 .685 .694 .697 .369 .385 .389 .395

arctic-v2 .739 .743 .735 .734 .739 .739 .744 .746 .399 .399 .400 .395

Reranking

TAS-B .712 .725 .721 .724 .686 .685 .694 .697 .369 .385 .389 .395

arctic-v2 .739 .743 .735 .734 .738 .739 .744 .746 .400 .399 .400 .395

believe our findings and open-source artifacts encourage broader

adoption of dimension importance estimation, highlighting its po-

tential to improve both retrieval accuracy and efficiency in next-

generation semantic search systems.
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