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ABSTRACT
A lot of research has focused on the efficiency of search engine
query processing, and in particular on disjunctive top-𝑘 queries that
return the highest scoring 𝑘 results that contain at least one of the
query terms. Disjunctive top-𝑘 queries over simple ranking func-
tions are commonly used to retrieve an initial set of candidate results
that are then reranked by more complex, often machine-learned
rankers. Many optimized top-𝑘 algorithms have been proposed,
including MaxScore, WAND, BMW, and JASS. While the fastest
methods achieve impressive results on top-10 and top-100 queries,
they tend to become much slower for the larger 𝑘 commonly used
for candidate generation.

In this paper, we focus on disjunctive top-𝑘 queries for larger
𝑘 . We propose new algorithms that achieve much faster query
processing for values of 𝑘 up to thousands or tens of thousands.
Our algorithms build on top of the live-block filtering approach of
Dimopoulos et al [12], and exploit the SIMD capabilities of mod-
ern CPUs. We also perform a detailed experimental comparison
of our methods with the fastest known approaches, and release
a full model implementation of our methods and of the underly-
ing live-block mechanism, which will allows others to design and
experiment with additional methods under the live-block approach.
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1 INTRODUCTION
Large search engines need to answer tens of thousands of user
queries per second with latencies of fractions of a second. Such
engines incur significant hardware and energy costs to meet de-
mands, motivating research on techniques that can increase query
processing efficiency. In particular, a lot of work has focused on
the disjunctive top-𝑘 query processing problem, where given a
query we have to retrieve the 𝑘 results with highest score among
all documents containing at least one of the query terms. Here,
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the scoring function is typically a simple aggregation of per-term
impact scores, where impact scores are either precomputed and
stored in the index, or computed at run-time from data stored in
the index.

Many optimized algorithms for disjunctive top-𝑘 query process-
ing have been proposed, including MaxScore [34], WAND [4], vari-
ous methods based on block-max scores [5, 9, 12–14, 16, 23, 30], and
the recent JASS [18] approach. The fastest state-of-the-art methods
use various optimizations in order to avoid accessing and scoring
most of the index postings for the query terms, and achieve very
low latencies for smaller values of 𝑘 – typically under 10ms for
𝑘 = 10 on the GOV2 and ClueWeb09B collections of 25M and 50M
documents, respectively. They tend to be less efficient for larger 𝑘 ,
such as 𝑘 = 1,000 or 𝑘 = 10,000, where they require up to an order
of magnitude more time.

However, this case is now arguably more important in practice
than the case of small𝑘 , since disjunctive top-𝑘 queries are primarily
used in current search engines to retrieve an initial set of candidate
results that is then reranked using more complex machine-learned
ranking functions. Under this approach, often called cascade rank-
ing [3, 6, 19, 20, 35, 37], the initial candidate set contains anywhere
from several hundred to more than ten thousand candidates, thus
leading to poor performance for existing algorithms.

In this paper, we propose new methods for disjunctive top-𝑘
query processing that obtain significant performance improvements
for larger values of 𝑘 , up to at least 𝑘 = 10,000. Our algorithms are
based on the so-called live-block filtering approach proposed in
[12], which uses SIMD operations on fine-grain block-max data to
determine a relatively small set of live blocks, which are areas of the
index that might contain top-𝑘 results. In particular, we propose
one method that integrates the MaxScore algorithm into the live-
block approach, and another that applies a novel SIMD-optimized
version of brute-force Term-at-a-Time (TAAT) to live blocks. We
also provide a detailed experimental comparison with the fastest
known algorithms that shows significant improvements for the new
methods, and release a complete implementation of the algorithms
and underlying live-block mechanism.

The remainder of this paper is organized as follows. Next, we
provide background and discuss related work. Section 3 describes
our new methods and their implementation. Section 4 describes
the experimental setup, and Section 5 presents our experimental
results. Finally, Section 6 provides some concluding remarks.

2 BACKGROUND AND RELATEDWORK
We now provide technical background and discuss related work.
Throughout this paper, we assume a document collection 𝐶 , where
each document is identified by an integer document ID (docID).
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2.1 Indexes and Scoring Functions
An inverted index is a data structure commonly used in search en-
gines that stores for each term the IDs of the documents containing
the term. More precisely, an inverted index consists of inverted lists,
one for each distinct term in the collection, where each inverted list
is a sequence of index postings. Each posting contains the docID of
a document containing the term, plus some additional information
about the occurrences of the term in the document. Unless stated
otherwise, we assume that postings in each list are sorted by docID,
enabling the use of efficient compression algorithms. This is the
most common approach in large-scale search engines; see, e.g., [10].

We consider two posting formats in this paper. In one case, post-
ings are of the form (𝑑, 𝑓 ) where 𝑓 is the number of times the term
occurs in document 𝑑 . This is a common choice, as many well-
known scoring functions such as cosine measures, BM25 [29], and
basic language modeling approaches [1, 7, 15, 38] can be efficiently
computed from the frequency and some extra data about inverted
list and document lengths.

In the second case, a posting is of the form (𝑑, 𝑠) where 𝑠 is a
precomputed and suitably quantized impact score, and the score of
a document with respect to the query is the sum of its impact scores
over the query terms. The advantage of this format is that queries
typically run much faster, as we avoid computation of impact scores
at query time. (This also allows for machine-learned impact scores
that would be infeasible to compute at query time.) On the other
hand, it requires us to fix the scoring function at indexing time, and
there is some possible loss in precision due to the use of quantized,
and thus approximated, impact scores. We refer to the first case
as a standard index, and the second one as a quantized index. We
mostly focus on quantized indexes in this paper.

2.2 Disjunctive Top-𝑘 Query Processing
Given an inverted index and a query 𝑞, the disjunctive top-𝑘 query
processing problem requires us to find the 𝑘 documents with the
highest score with respect to 𝑞 (with suitable tie breaks, say based
on docID). This problem can clearly be solved by exhaustively
traversing the inverted lists for the query terms and computing
document scores from the frequencies or impact scores, and a num-
ber of traversal methods including Term-at-a-Time (TAAT) and
Document-at-a-Time (DAAT) have been proposed (see, e.g., [39]).

We focus on optimized methods that find the top-𝑘 results with-
out exhaustive traversal of the inverted lists. This is often called
dynamic pruning or early termination, and has been studied exten-
sively over the last two decades. Algorithms that use early termina-
tion are considered safe if they always return the same top-𝑘 results
as an exhaustive traversal of the inverted lists, and unsafe otherwise.
Note that under this definition, a method using a quantized index
is considered safe if it returns the same result as an exhaustive
traversal of the quantized index structures – while the process of
quantization itself introduces an approximation and might result in
a reduction in result quality if not done carefully, this is a separate
concern. (We also note that ranking functions such as BM25 or lan-
guage modeling are themselves derived under various simplifying
assumptions and approximations.)

Our goal here is to improve the efficiency of safe disjunctive top-𝑘
processing, particularly for larger values of 𝑘 . Many safe and highly
optimized algorithms for this problem that have been proposed.

Frequently studied approaches are MaxScore [34], WAND [4], and
Block-Max WAND [14] and various related methods [5, 9, 12, 13,
23, 24, 30, 31] that use block-wise maximum impact scores to skip
parts of the index that cannot contain any top-𝑘 results.

A somewhat different approach was taken in the recent JASS
algorithm [18], which uses a Score-at-a-Time (SAAT) approach [2]
where index postings are organized by quantized impact scores, and
accessed in this order during query processing. JASS can be used
as an exhaustive algorithm, or early-terminated at any time during
execution, resulting in an approximate, but unsafe, result. Follow-
up work in [8] compared JASS to the WAND and BMW approaches,
and observed that for large 𝑘 JASS might be a good alternative as its
running time does not increase significantly with 𝑘 . Also, running
times for BMW were observed to be somewhat unpredictable, with
some otherwise harmless looking queries taking a long time, while
JASS exhibited a more stable behavior.

The comparison in [8] motivated our effort here to improve the
running time of safe early-termination approaches for large 𝑘 . We
will compare our new methods to an aggressively early-terminated
but unsafe version of JASS, the MaxScore and VBMW approaches,
which were the fastest in the recent experimental comparison study
in [26], and the BMW-LB method in [12], which is the most similar
previous approach and also based on the live-block mechanism.

2.3 Thresholds and Document Orderings
We briefly describe two additional methods for speeding up query
processing, document reordering and threshold estimation. Docu-
ment reordering is the idea of assigning docIDs to documents in
an optimal manner. It has been shown that assigning docIDs based
on URL ordering [32] or recursive bipartite partitioning [11] can
significantly decrease both index size and query processing times.

Threshold estimation is the problem of estimating the top-𝑘
threshold for a query in time significantly less than the cost of
issuing the query. It is known that having a good initial estimate for
the threshold of a query leads to significantly faster execution times
for many algorithms, compared to the case where the threshold
starts from zero and slowly increases as higher-scoring documents
are discovered during index traversal [14, 27, 28, 36].
Table 1: Performance comparison of query time (in ms) for MaxS-
core and VBMW w.r.t TREC 2005 and 2006 queries on GOV2, for
𝑘 = {10, 1000, 10000} in three different settings: unquantized index
with initial threshold 0 (𝑈 ), quantized index with initial threshold
0 (𝑄), and quantized index with initial threshold (𝑄𝑇 ) estimated
using the 𝑄3

𝑘
-𝑙𝑜𝑔 method.

TREC 2005 TREC 2006
𝑈 𝑄 𝑄𝑇 𝑈 𝑄 𝑄𝑇

Top-10
MaxScore 4.29 1.92 1.64 6.38 3.11 2.88
VBMW 1.96 1.85 1.57 4.51 4.08 3.85

Top-1,000
MaxScore 10.07 6.07 4.18 14.83 9.53 7.04
VBMW 8.29 7.31 5.05 16.23 14.63 11.56

Top-10,000
MaxScore 21.78 16.59 9.78 32.11 25.72 17.02
VBMW 23.78 20.93 12.50 40.98 37.76 26.77



In our implementation and experimental comparison, we use
document reordering by recursive graph bisection (BP) [11], using
the implementation in [21], and threshold estimation using the
safe 𝑄3

𝑘
-𝑙𝑜𝑔 method in [27] (building on an approach in [36]). For

fairness, we also integrate these techniques into all the methods we
compare to, with the exception of JASS where thresholds are not
useful and where the global ordering is only applied within each
impact score segment.

Very recently, Mackenzie and Moffat [22] showed how threshold
estimation and quantization can speed up query processing and,
in the process, reduce the improvement obtained by block max-
based methods over other approaches. We show in Table 1 for our
setup how quantization and (to a lesser degree) threshold estima-
tion give larger benefits for a simpler algorithm such as MaxScore,
resulting in MaxScore matching and often outperforming an opti-
mized VBMW implementation, especially for larger 𝑘 and query
logs containing longer queries (TREC 2006).

2.4 Live-Block Filtering
Our approach is based on the live-block filtering approach proposed
in [12], and thus we describe this approach briefly. Recall that in
block max-based approaches, we store a maximum impact score
for each block of consecutive postings in an inverted list, and these
block maxes are used to skip over postings that cannot result in a
score above the top-𝑘 threshold. Here, each block might contain
a fixed number of postings, say 32 or 128 [5, 14], or a variable
number of consecutive postings with similar impact scores [23].
Smaller blocks allow us to skip more postings during index traversal.
However, they also lead to additional overheads as block boundaries
are not aligned in docID space between the different inverted lists.

As an alternative, [12, 13] proposed to align the block boundaries
between different lists, by defining block boundaries in terms of
docIDs. In particular, we choose a global parameter 𝑏, and store a
maximum impact score for each group of consecutive postings in an
inverted list whose docIDs only differ in the least significant 𝑏 bits.
Thus, for each inverted list we get an array of ⌈|𝐶 |/2𝑏⌉ maximum
impact scores, where |𝐶 | is the number of documents in the collec-
tion. Given a query and a current estimate for its top-𝑘 threshold –
the value needed for a result to make it into the top 𝑘 – we say that
a block is dead if the sum of the corresponding block maxes for the
query terms is less than the threshold, and live otherwise. Thus,
we can perform a vector add operation between the block-max
arrays of the query terms to determine which blocks are live or
dead. This operation can be performed extremely efficiently using
SIMD command sets such as SSE, AVX2, or AVX-512 on current
CPUs, allowing use of fairly small values of 𝑏 with little slowdown.

The problem with this idea is that it would seem to require
storing an array of ⌈|𝐶 |/2𝑏⌉ maximum impact scores for every in-
verted list, including very short lists where most of the block maxes
are zero. This is addressed in [12, 13] by only precomputing the
block-max arrays for lists above a certain length and/or frequently
occurring in queries, and materializing the other lists on-the-fly
from the index as needed. It was shown in [13] that this can support
blocks as small as 25 = 32 with space overhead less than half of the
index size, and with average on-the-fly materialization costs of a
few hundred microseconds per query.

As described in [12], the entire live-block mechanism of precom-

puted block-max arrays, on-the-fly materialization, and vector-add
live-block computation can be implemented as a lower-level black-
box mechanism that gives higher-level query processing algorithms
access to live-block information and block maxes without having
to deal with the underlying complexities. In fact, as shown in [12],
a number of well-known query processing algorithms can be signif-
icantly accelerated by simply replacing the standard forward seek
mechanism in inverted lists (sometimes called nextGEQ()) with an
implementation that seeks forward to the next posting contained
in a live block, leaving the algorithm itself unchanged. In our exper-
iments, we compare to BMW-LB, the fastest of the algorithms in
[12], which uses this modified forward seek as well as direct access
to the block maxes in the arrays.

In preliminary experiments in Figure 1, we show the percentage
of live blocks for different block sizes and values of 𝑘 , for ran-
dom and BP document reordering and for estimated and real top-𝑘
thresholds. We see that BP reordering results in fewer live blocks,
and that estimated thresholds do almost as well as the ideal (real)
threshold. As expected, the percentage of live blocks increases with
the block size and with 𝑘 .

3 OUR METHODS AND IMPLEMENTATIONS
We now describe our two new methods, which we call Range-
MaxScore and Range-DRAAT, and discuss some details of the im-
plementation.

Range-MaxScore: This is a very simple approach that almost
directly applies the MaxScore algorithm to the live blocks produced
by the underlying live-block mechanism. That is, we apply an opti-
mized MaxScore to each docID range of size 2𝑏 that is live, where
we separately select essential lists for each block based on block-
max scores rather than per-list maxscores. We take some care to
minimize any overheads in invoking MaxScore, since it is called
many times on small amounts of data.

Range-DRAAT: In this approach, we basically apply an opti-
mized Term-at-a-Time algorithm to each live block. Thus, in con-
trast to Range-MaxScore, this method accesses all postings that
exist in a live block, but saves the overhead of selecting and handling
essential lists.

One aspect that distinguishes our version of TAAT is the use
of SIMD commands for handling the direct-mapped accumulator
array. As shown in Figure 1, the live-block mechanism works best
for small values of 𝑏, such as 𝑏 = 5 and 𝑏 = 6. For these cases, the
direct-mapped accumulator arrays for Range-DRAAT, which have
2𝑏 entries, become small enough to be handled inside the SIMD
registers of current CPUs. This means that we can usually initialize
the accumulators in one SIMD command, and later identify any
accumulated values above the threshold in a few SIMD commands.
Moreover, our approach does not use a top-𝑘 heap, but instead
collects any results above the (estimated) threshold in a memory-
based array that is sorted at the end to obtain the top-𝑘 .

More precisely, given large enough vector registers, in a single
operation we can compare all the accumulator entries with the
threshold to identify any entries above the threshold, and generate
a corresponding bitmask. Next, we can prune the non-exceeding
elements in the SIMD vector, using table lookups and an efficient
shuffle instruction, such that the exceeding ones become compacted
and can then be copied into the result array. In the end, a highly
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Figure 1: Average percentage of live blocks per query for several block sizes w.r.t. TREC 2005 queries on GOV2 under random and BP
document ordering, using real and estimated thresholds for 𝑘 = {10, 1000, 10000}.

tuned radix sort is used to sort array entries in descending order
by score.

Live-Block Implementation:We implemented the live-block
mechanism as an extension to the PISA open-source platform for
indexing and query processing research. Our implementation fol-
lowed the description in [12], but we did not implement the addi-
tional posting bits mechanism, which according to [12] gave minor
benefits for randomly ordered indexes but no benefits for the re-
ordered index structures that we use here.

We experimented with different implementations of the live-
block computation, a scalar one, one using SSE, one using AVX2,
and one using the AVX-512 instruction set. As we show later, the
latter two significantly outperformed the others. We also note that
an early implementation of our methods took a long time on some
of the queries for large values of 𝑘 . After inspecting these cases,
we noticed that these were queries with very short inverted lists,
where the (estimated) disjunctive top-𝑘 threshold was zero. Thus, all
blocks were identified as live, and significant overhead was incurred
by calling Range-MaxScore and Range-DRAAT on blocks that had
no postings at all. This issue was easily resolved by requiring live
blocks to have a score strictly above zero, but it illustrates how
subtle implementation details can have major consequences.

Threshold Estimation and Consequences:We implemented
a top-𝑘 threshold estimation technique called 𝑄3

𝑘
-𝑙𝑜𝑔 recently de-

scribed in [27], which builds on an approach in [36]. In this method,
top-𝑘 thresholds are precomputed for all terms in the index, and
for all pairs and triplets of terms that occur in a training set of
queries, in our case a set of 10M queries from the AOL query log.
Thresholds are precomputed by simply issuing a disjunctive top-𝑘
query for every selected term, pair, and triplet. At query time, the
highest threshold of any available term, pair, or triplet contained
in the query is used as the estimate. This is a safe estimate in that
it will never overestimate the threshold; i.e., that there is no danger
of having to rerun a query with a lower threshold due to obtaining
less than 𝑘 results above the estimated threshold.

We note that the recent progress in threshold estimation tech-
niques enabled another unexpected simplification in our code. We
already discussed how we were able to get rid of the top-𝑘 heap

in Range-DRAAT. This was fairly easy to implement because our
threshold estimate is strong enough to be used throughout the index
traversal, i.e., with no need to refine the threshold after traversing
part of the index. The same idea was also used in the live-block
computation, where we use the initial threshold estimate to im-
mediately compute the live blocks of the entire document range.
This is in contrast to [12, 13], which starts with a very weak initial
threshold (in fact, 0 in their experiments), and then performs sev-
eral rounds of live block computation over parts of the document
collection using progressively higher threshold values. Our solution
resulted in a much simpler implementation that achieves almost the
same number of live blocks as a solution that starts with a strong
threshold estimate that is further increased over time.

Compression of block-max arrays: To efficiently store the
block-max arrays, we implemented a simple but effective compres-
sion mechanism that works well on sparse block-max data and is
also extremely fast to decompress. We define a superblock as con-
sisting of 256 consecutive block-max values. For each superblock
we store the number of block maxes greater than zero, and for
each such block max we store a pair (𝑝, 𝑠), where 𝑝 is the offset in
the superblock and 𝑠 is the block-max score. As shown later, for
certain list lengths, this takes less space than storing a precom-
puted block-max vector and is much faster to convert back into a
block-max vector than on-the-fly computation. (We note that this
method is different from, and faster than, a method for block-max
compression described in [12].)

4 EXPERIMENTAL SETUP
We now describe our setup and some more implementation details.

Testing Setup All algorithms are implemented in C++17 and
compiled with GCC 7.5.0 with the highest optimization settings. In
particular, we compare our methods to the following previously
known algorithms: MaxScore, VBMW, BMW-LB, and JASS. For
VBMW, the variable-block sizes depend on a parameter 𝜆; we apply
binary search over 𝜆 to obtain an average block size of 40 ± 0.5.
For JASS, we used the original implementation1 from the authors
with a fairly aggressive early termination policy where we stop
1https://github.com/andrewtrotman/JASSv2/
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after accessing just 10% of the index postings, as suggested in [18];
note that this is an unsafe early termination method, while all other
methods are safe. For BMW-LB and Range-MaxScore, we set the
size of the blocks of the block-max arrays to 128; for Range-DRAAT
we use 32 instead. These choices minimized the average query
processing costs for each method.

All algorithms were provided with a strong initial threshold
estimate based on the𝑄3

𝑘
-𝑙𝑜𝑔 method in [27], with the exception of

JASS where this does not apply.
The experiments were conducted on a single core of a machine

with Intel Core i7-7820X Skylake cores clocked at 3.60GHz, with
64GB RAM, running GNU/Linux 4.15. The CPU supports Intel
SSE4.2, Intel AVX2 and Intel AVX-512 instruction-set extensions.

Indexes: All indexes were saved to disk after construction, and
memory mapped to be queried, so that there are no hidden space
costs due to loading of additional data structures in memory. The
posting lists are compressed using SIMD-BP128 [17], which was
shown in [26] to provide a good trade-off between size and speed.
JASS uses an inverted index compressed with Group Elias Gamma
SIMD [33] that is significantly larger than the inverted index used
by the other methods. Before timing the queries, we ensure that
the required posting lists were fully loaded in memory.

Unless specified otherwise, indexes were reordered using BP
[11, 21], and were build as quantized indexes using 8-bit linear
quantization. Block maxes used for live-block computation were
also quantized in the same way. Note that in principle we could use
different quantizations for indexes and block maxes, or even use
unquantized inverted indexes with quantized block maxes, where
we would need to round up block-max values to the next quantile.

Documents and Queries: We performed experiments on
three standard document collections, GOV2, ClueWeb09B and
ClueWeb12B. The terms in the collection were lowercased and
stemmed using the Porter2 stemmer; no stopwords were removed.
Table 2 summarizes basic statistics of the collections and the sizes
of the resulting compressed inverted indexes (used by all the algo-
rithms with the exception of JASS).

Table 2: Basic statistics for the test collections.

Documents Terms Postings Index Size
GOV2 25,205,179 32,407,061 5,426,935,226 8.25 GB
CW09B 50,220,110 87,896,391 15,426,727,424 27.54 GB
CW12B 52,343,021 133,248,235 14,620,401,885 26.69 GB

To evaluate query processing speed, we use TREC 2005 and
TREC 2006 Terabyte Track Efficiency Task queries. From each sets
of queries, we randomly selected 1,000 queries.

Our source code is publicly available2 for readers interested in
further implementation details or in replicating the experiments.
Our code is based on the PISA platform [25].

5 EXPERIMENTAL RESULTS
In this section we analyze the performance of Range-MaxScore
and Range-DRAAT with an extensive experimental evaluation in
a reproducible setting, using state-of-the-art baselines, standard
benchmark text collections, and large query logs.
2https://github.com/pisa-engine/pisa/tree/live-block

Most of the preliminary experiments related to live-block com-
putation are performed on GOV2 using TREC 2005 query log. Later
ClueWeb09B and ClueWeb12B with TREC 2005 and TREC 2006
query logs are added to fully evaluate our algorithms, as they are
more representative of real-world web search collections.

5.1 Live-block Computation
Space overhead and computational time trade-offs. Recall that we

precompute and store block maxes for all inverted lists above a
certain length L𝑚𝑖𝑛 , and compute the block-max arrays on-the-fly
for shorter lists. Table 3 shows the amount of space required to store
(uncompressed) precomputed block-max arrays, given a minimum
list length. As expected, small minimum list sizes and small block
sizes result in large space requirements for the block maxes, often
multiples of the index size.

Next, Table 4 shows the average time per query spent on mate-
rialization of block-max arrays, using on-the-fly computation for
lists shorter than L𝑚𝑖𝑛 . Thus, by choosing an appropriate value
of L𝑚𝑖𝑛 in Tables 3 and 4, we can trade off time and space. For
example, for Range-DRAAT we use blocks of size 32, so if we set
L𝑚𝑖𝑛 in Tables 3 and 4 to 218, we would need 2.55 GB of space
and an average of 471 microseconds overhead per query. We could
decide to use more space and reduce the time overhead, by setting
L𝑚𝑖𝑛 = 214, which would require 12.24 GB of additional memory
but only an average of 70 microseconds overhead per query.
Table 3: Space overhead (in GB) to store precomputed block-max
arrays for several block sizes with different minimum posting list
lengths (L𝑚𝑖𝑛), on GOV2.

Block size
L𝑚𝑖𝑛 32 64 128 256 512 1024
211 55.26 27.63 13.82 6.91 3.46 1.73
212 30.23 15.12 7.56 3.78 1.89 0.95
213 19.06 9.53 4.77 2.38 1.19 0.60
214 12.24 6.12 3.06 1.53 0.77 0.38
215 8.02 4.01 2.00 1.00 0.50 0.25
216 5.68 2.84 1.42 0.71 0.36 0.18
217 4.12 2.06 1.03 0.52 0.26 0.13
218 2.55 1.28 0.64 0.32 0.16 0.08

We noticed that posting lists with lengths in the range [214, 218]
use a lot of space when precomputed, and a lot of time when com-
puted on-the-fly. They are also somewhat sparse in that themajority
of their block maxes are 0. Next, we explore what happens when we
precompute and store these arrays using the compression format
proposed in Section 3. Results are shown in Table 5, where the first
row shows the compressed size of only these lists, and the second
row the average cost per query of decompressing block-max arrays.

For our example with block size 32, we see that block-max com-
pression can greatly reduce space requirements while keeping
on-the-fly costs small. In particular, if we precompute block-max
arrays for lists longer than 218 using 2.55 GB, precompute and
store compressed block maxes for lists in the range [214, 218] us-
ing an additional 2.03 GB, and materialize block maxes on-the-
fly for the remaining lists, we obtain a total space overhead of
2.55 + 2.03 = 4.58 GB and an average materialization and decom-
pression cost of 70 + 48 = 118𝜇𝑠 , much better than before.

https://github.com/pisa-engine/pisa/tree/live-block


Table 4: Average block-max on-the-fly computation time (in 𝜇𝑠)
per query, for several block sizes with different posting list lengths
(L𝑚𝑖𝑛), for TREC 2005 queries on GOV2.

Block size
L𝑚𝑖𝑛 32 64 128 256 512 1024
211 26 12 5 3 3 2
212 34 15 7 5 4 3
213 46 21 11 8 6 5
214 70 34 19 16 14 13
215 105 57 38 34 30 29
216 167 104 77 70 68 66
217 280 205 168 156 150 149
218 471 385 344 329 324 319

Table 5: Space overhead (in GB) to store compressed block-max
arrays, and time (in 𝜇𝑠) to decompress them for several block sizes,
for posting lists with lengths in the range [214, 218] on GOV2.

Block size
32 64 128 256 512 1024

Space 2.03 1.74 1.51 1.29 1.09 0.87
Time 46 28 19 12 7 5

Live-block computation. Next, we look at the cost of the actual
live-block computation once the block-max arrays for a query are
materialized. The data in Table 6 indicates that the use of SIMD
instructions is absolutely essential to efficiently compute the live-
block bit-vector. On the other hand, the difference between the
SIMD instruction sets was less pronounced, with even SSE obtaining
decent results. Finally, we note that Table 6 shows that costs increase
significantly with smaller block sizes. For block size 32 we have
8 times more blocks to add up than for block size 256, but the
cost increases by a factor of about 25. The reason appears to be
cache effects – for larger block sizes the entire block-max array
may already reside in memory after on-the-fly computation or
decompression, while for the smaller block sizes the array does not
fit into the same cache level.
Table 6: Average live-block computation time per-query (in 𝜇𝑠)
for TREC 2005 queries on the GOV2 collection, using different
instruction set extensions.

Block size
32 64 128 256 512 1024

Scalar 2,444 1,220 610 304 152 75
SSE 289 155 60 22 10 5
AVX2 199 81 36 12 6 3
AVX-512 180 67 27 7 4 2

5.2 Overall Comparison
Next, we compare all methods in terms of overall efficiency, for
different query lengths. The results are presented in Table 7, which
shows average query latencies for 𝑘 = {10, 1000, 10000}, for two
query logs on three different datasets. We observe that JASS is sub-
stantially slower than the other methods, with some exceptions for
queries longer than 5 terms on the GOV2 dataset, and for TREC06
with 𝑘 = 10,000. VBMW and MaxScore perform similarly, with the
former being more efficient for short queries and small 𝑘 values.
Overall, our newmethods, Range-MaxScore and Range-DRAAT, are

10 50 10
0

50
0

1,
00

0

5,
00

0

10
,0

00

50
,0

00

10
0,

00
0

k

10

20

30

40

50

60

70

80

Ti
m

e
[m

s]

JASS
VBMW

MaxScore
BMW-LB

Range-MaxScore
Range-DRAAT

Figure 2: Visualization of average query latencies (in ms) of differ-
ent query processing strategies for TREC 2005 queries on GOV2,
for different 𝑘 values.

significantly faster than previous methods in most cases. In particu-
lar, Range-MaxScore is fast for small 𝑘 values, while Range-DRAAT
excels on larger values.

In Figure 3 we summarize query latencies for all techniques
across all collections, and for several 𝑘 values, in Tukey’s box-and-
whisker plots. For most of the algorithms, the spans covered by
the whiskers are quite broad, indicating high variance in query
latencies. Range-MaxScore and particularly Range-DRAAT exhibit
a more predictable behaviour than most other methods.

Finally, in Figure 2 we plot the running times of the methods
for different 𝑘 values, ranging from 𝑘 = 10 up to 100,000. We see
that Range-DRAAT significantly outperforms all other methods
for the largest values of 𝑘 . Surprisingly, while JASS does well for
𝑘 = 10,000, its performance degrades significantly as we increase 𝑘
further. We caution here that we are not sure why this is happening,
and it may be that JASS was not built for such extreme values.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we studied algorithms for safe disjunctive top-𝑘 query
processing, and proposed two new methods based on the live-block
approach in [12]. Our experimental results show that these meth-
ods achieve significant improvements over the best previously pro-
posed approaches. We also provide a model implementation of our
methods, and the underlying live-block mechanism, in the PISA
framework that will allow others to easily experiment with new
algorithms under the live-block approach.

Our work leaves a number of open questions for future research.
For example, one could try to further improve the speed of the
Range-DRAAT approach by designing new compressed index for-
mats that enable the use of SIMD commands for score accumulation,
or that support faster on-the-fly creation of block-max arrays. There
is also the potential to design other types of algorithms under the
live-block approach that outperform our methods.
Acknowledgements. This research was supported by NSF Grant
IIS-1718680 and a grant from Amazon.



Table 7: Query times (in ms) of different query processing strategies for several query lengths and average query times w.r.t. TREC 2005 and
TREC 2006 Terabyte Track Efficiency Task queries on GOV2, ClueWeb09B and ClueWeb12B for 𝑘 = {10, 1000, 10000}.

TREC05 TREC06

2 3 4 5 6+ Avg 2 3 4 5 6+ Avg

G
O

V
2

To
p-
10

JASS10% 3.11 6.17 7.76 9.03 11.36 5.89 3.33 6.54 7.98 9.58 11.76 7.63
VBMW 0.60 1.11 1.50 2.61 6.23 1.57 0.49 1.58 2.44 3.44 10.97 3.77
MaxScore 1.44 1.40 1.45 2.24 2.88 1.64 1.25 2.01 2.47 2.88 5.42 2.81
BMW-LB 0.23 0.37 0.54 1.16 2.49 0.61 0.21 0.61 1.20 1.74 5.48 1.83
Range-MaxScore 0.16 0.29 0.46 0.89 1.86 0.46 0.16 0.48 0.88 1.33 3.63 1.28
Range-DRAAT 0.29 0.50 0.80 1.78 6.13 1.10 0.36 0.95 1.83 3.07 13.17 3.83

To
p-
1,0

00

JASS10% 3.48 6.70 8.43 9.57 11.96 6.38 4.20 7.20 9.22 11.04 12.79 8.61
VBMW 2.01 3.73 4.76 7.56 20.11 5.05 2.16 4.55 7.30 11.54 32.92 11.57
MaxScore 2.96 3.49 4.25 5.94 9.59 4.18 2.89 4.22 5.59 7.63 14.75 6.97
BMW-LB 1.27 2.34 3.01 5.10 12.61 3.21 1.46 2.86 4.97 7.94 22.01 7.75
Range-MaxScore 1.05 1.89 2.62 4.03 8.08 2.43 1.12 2.47 3.92 5.84 12.77 5.18
Range-DRAAT 0.73 1.37 2.13 4.13 13.14 2.57 0.87 1.78 3.36 5.93 19.93 6.28

To
p-
10
,0
00

JASS10% 4.57 8.99 11.80 14.20 17.60 8.87 5.23 9.21 11.99 15.14 17.62 11.42
VBMW 6.52 10.94 12.19 16.89 39.46 12.50 6.21 23.28 17.16 24.01 63.54 27.19
MaxScore 6.72 9.85 10.06 12.46 20.13 9.78 6.48 19.34 12.23 15.42 29.39 16.95
BMW-LB 5.86 9.68 9.89 13.73 29.57 10.36 5.56 23.19 14.36 19.18 49.69 22.87
Range-MaxScore 5.15 8.47 8.28 11.21 19.92 8.38 4.63 20.05 11.53 14.41 28.94 16.40
Range-DRAAT 2.28 3.91 5.71 8.92 22.33 5.69 2.35 5.34 7.17 11.48 30.06 11.18

C
lu

eW
eb

09
B

To
p-
10

JASS10% 18.52 29.89 37.57 45.11 48.47 29.47 14.29 28.41 34.45 41.38 46.28 28.61
VBMW 3.00 6.49 6.87 12.19 29.09 7.73 3.24 5.22 9.81 14.72 39.26 14.27
MaxScore 4.75 5.09 4.96 6.87 8.72 5.42 3.55 4.60 6.45 8.15 14.35 7.37
BMW-LB 0.66 1.64 2.05 3.64 9.43 2.20 0.81 1.45 3.33 5.24 16.15 5.32
Range-MaxScore 0.46 1.08 1.83 3.09 6.79 1.65 0.59 1.24 2.92 4.57 13.57 4.52
Range-DRAAT 0.86 2.18 3.63 6.76 31.22 4.99 1.01 2.68 6.11 11.02 50.23 14.01

To
p-
1,0

00

JASS10% 18.72 30.16 37.70 45.46 48.68 29.69 14.72 30.00 34.84 41.91 46.63 29.63
VBMW 8.50 15.69 20.03 34.73 74.68 20.61 10.42 13.97 26.37 40.03 103.77 38.34
MaxScore 8.12 9.24 11.89 16.46 23.01 11.12 8.44 9.05 14.37 20.20 36.81 17.51
BMW-LB 3.28 6.43 9.53 18.00 36.42 9.45 6.64 6.62 14.09 22.16 59.10 21.31
Range-MaxScore 2.62 5.16 8.78 14.81 23.00 7.29 5.28 5.94 12.56 19.05 41.29 16.52
Range-DRAAT 1.91 4.39 7.66 15.15 54.46 9.53 2.35 4.91 11.53 21.10 74.01 22.39

To
p-
10
,0
00

JASS10% 20.35 33.35 42.24 50.83 55.08 32.94 15.41 30.97 37.99 45.79 51.26 31.83
VBMW 16.32 28.90 37.61 62.67 135.99 38.09 18.40 31.21 46.12 74.97 190.28 71.28
MaxScore 13.17 17.15 22.99 32.59 47.60 20.65 14.18 21.46 26.14 38.67 69.53 33.69
BMW-LB 9.35 17.44 24.44 43.02 83.75 23.67 12.71 22.79 31.13 50.76 126.93 48.31
Range-MaxScore 8.41 14.60 22.79 35.87 56.58 19.14 10.85 20.98 27.88 42.54 84.74 37.09
Range-DRAAT 4.88 10.04 16.33 31.45 86.16 17.93 5.06 11.15 21.04 37.38 111.35 36.62

C
lu

eW
eb

12
B

To
p-
10

JASS10% 16.03 27.92 34.12 40.08 46.44 26.78 12.46 25.84 31.21 37.84 43.75 25.95
VBMW 1.90 4.62 5.39 9.39 24.81 5.93 1.53 3.82 7.72 11.75 32.25 11.29
MaxScore 4.17 4.46 4.29 6.22 7.83 4.79 3.04 4.03 5.72 6.89 13.04 6.51
BMW-LB 0.39 1.06 1.37 2.59 6.71 1.50 0.45 1.03 2.39 3.89 12.60 4.02
Range-MaxScore 0.31 0.77 1.20 2.23 5.22 1.19 0.38 0.90 2.16 3.35 10.75 3.46
Range-DRAAT 0.65 1.56 2.61 4.70 23.58 3.69 0.76 1.90 4.45 7.42 37.03 10.19

To
p-
1,0

00

JASS10% 16.38 28.22 34.46 40.53 46.80 27.12 12.59 26.45 31.89 38.48 44.13 26.20
VBMW 7.32 12.14 15.40 26.94 61.94 16.64 6.37 10.00 19.91 30.08 80.29 28.94
MaxScore 8.03 8.21 9.82 13.86 20.94 10.08 5.95 7.69 12.60 17.14 31.89 14.89
BMW-LB 2.73 4.76 6.85 12.41 28.25 7.13 3.57 4.67 10.18 15.59 44.54 15.47
Range-MaxScore 2.17 4.01 6.17 10.24 18.58 5.51 2.81 4.41 9.49 13.93 32.68 12.49
Range-DRAAT 1.71 3.37 5.68 10.55 42.89 7.39 1.82 3.58 8.39 14.36 57.12 16.80

To
p-
10
,0
00

JASS10% 17.62 30.79 38.24 45.34 52.31 29.80 13.65 28.43 34.50 42.04 49.46 28.21
VBMW 13.30 23.61 29.48 49.23 113.70 30.98 11.97 29.37 36.76 55.89 145.35 55.59
MaxScore 12.13 15.76 19.93 28.21 43.05 18.58 11.43 23.43 22.92 31.94 59.16 29.83
BMW-LB 7.64 13.59 18.90 32.02 67.40 18.64 8.13 24.46 23.81 36.72 94.38 37.52
Range-MaxScore 6.97 12.02 17.54 26.66 46.52 15.33 7.04 22.60 22.00 32.47 67.81 30.50
Range-DRAAT 4.06 7.91 12.74 22.39 71.01 14.28 4.02 8.92 16.00 26.83 86.40 28.07
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Figure 3: Visualization of query latencies (in ms) using Tukey’s box-and-whisker plots of different query processing strategies w.r.t. TREC
2005 queries on GOV2, ClueWeb09B, ClueWeb12B for 𝑘 = {10, 1000, 10000}.
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