
Using Conjunctions for Faster Disjunctive Top-kQueries
Michał Siedlaczek

michal.siedlaczek@nyu.edu

New York University

New York, US

Antonio Mallia

antonio.mallia@nyu.edu

New York University

New York, US

Torsten Suel

torsten.suel@nyu.edu

New York University

New York, US

ABSTRACT
While current search engines use highly complex ranking functions

with hundreds of features, they often perform an initial candidate

generation step that uses a very simple ranking function to identify

a limited set of promising candidates. A common approach is to use

a disjunctive top-k query for this step. There are many methods

for disjunctive top-k computation, but they tend to be slow for the

required values of 𝑘 , which are in the hundreds to thousands.

We propose a new approach to safe disjunctive top-k computa-

tion that, somewhat counterintuitively, uses precomputed conjunc-

tions of inverted lists to speed up disjunctive queries. The approach

is based on a generalization of the well-known MaxScore algo-

rithm, and utilizes recent improvements in threshold estimation

techniques as well as new ideas to obtain significant improvements

in performance. Our algorithms are implemented as an extension

of the PISA framework for search-engine query processing, and

available as open-source to support replication and follow-up work.
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• Information systems → Information retrieval query pro-
cessing.
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1 INTRODUCTION
Modern search engines use highly complex ranking functions to

return high-quality results. These functions may involve hundreds

of features and are often obtained using learning-to-rank tech-

niques [20] or, more recently, neural network technologies such

as transformers [19]. While complex rankers significantly improve

relevance in the top positions compared to simple ranking schemes,

such as BM25 or query likelihood, they are also expensive to evalu-

ate on large numbers of documents. As a result, most systems use

a cascading approach to ranking [36], where a very simple ranking
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function is first used to retrieve a limited number of candidates

that are subsequently reranked using more complex and expen-

sive methods. This initial phase is often referred to as candidate
generation, and is the focus of our work here.

One popular approach to candidate generation involves running

a disjunctive top-𝑘 query on the query terms to retrieve a few

hundred to a few thousand initial candidates. This approach is

known to achieve better retrieval quality than a purely conjunctive

approach, which requires all query terms to be present in candidate

documents. However, it comes at the cost of a significant increase

in processing time, since a disjunctive query has to score many

more documents than a conjunctive one.

This has motivated a lot of work on more efficient ways to

process disjunctive top-𝑘 queries, with continuous improvements

over the past three decades. We focus on so-called safe methods,

which are guaranteed to return all correct top-𝑘 results under the

simple ranking function, as opposed to unsafe methods, which may

miss some results. Well-known algorithms for disjunctive top-𝑘

retrieval include MaxScore [35], WAND [3], Block-Max WAND

[12] and related methods such as BMM [4, 11] and VBMW [23],

and JASS [8]. While these methods perform well for small 𝑘 (e.g.,

𝑘 = 10), many of them slow down significantly when 𝑘 increases

to 1000 or more [8, 25], which is common in candidate generation

[5, 6, 9, 22, 29, 40]. It was also observed [25] that for larger 𝑘 , the

fastest method is often the much older and simpler MaxScore [35].

The goal of this work is to improve the performance of disjunc-

tive top-𝑘 query processing for larger 𝑘 by extending MaxScore.

In particular, we generalize the concept of essential lists in MaxS-

core by allowing precomputed intersections (conjunctions) of query

terms to be used as essential lists. Since intersections of two lists

tend to be much shorter than either list, this can result in much

smaller essential index structures, and thus faster processing under

a MaxScore-style approach. Our approach requires a good initial

estimate of the top-𝑘 threshold, and then uses the concept of result

classes to select an optimal set of essential structures as access

paths for candidate retrieval. Our main contributions are:

(1) We propose a novel and interesting generalization of the

Maxscore approach for safe disjunctive top-𝑘 queries that

allows intersections to be selected as essential lists.

(2) We describe methods for choosing which intersections to

precompute at indexing time, which index structures to use

as essential structures at query time, and which lookups to

perform during index traversal.

(3) We present extensive experiments on carefully optimized im-

plementations of our methods and previous work that show

the benefits of our approach. While we require significant

additional data structures, the overhead of retrieving these

from SSD is shown to be small compared to overall cost.
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(4) We provide an implementation of the proposed approach as

an extension of the open-source PISA IR framework [24].

2 BACKGROUND AND RELATEDWORK
In this section, we define inverted indexes and disjunctive top-𝑘

query processing, and discuss disjunctive query processing algo-

rithms. Then we discuss previous methods that exploit intersections

for faster query processing, and the role of threshold estimation in

accelerating retrieval algorithms.

2.1 Inverted Indexes and Top-k Queries
An inverted index is a basic data structure used in almost all search

systems. It stores information about where each term occurs in the

collection; more precisely, the inverted index contains an inverted
list 𝑙𝑤 for each distinct term𝑤 . An inverted list 𝑙𝑤 is a sequence of

index postings, where each index posting is a pair (𝑑, 𝑓 ), where 𝑑
is the document ID (docID) of a document containing𝑤 , and 𝑓 is

the frequency (number of occurrences) of 𝑓 in the document. We

assume that postings in each inverted list are sorted by docID.

A ranking function is defined as a function 𝑠 that, given a query

𝑞, assigns each document 𝑑 a score 𝑠 (𝑑, 𝑞). We assume a simple

ranking function of the form 𝑠 (𝑑, 𝑞) = ∑𝑚−1
𝑖=0 𝑓 (𝑑,𝑤𝑖 ), where the

𝑤𝑖 are the𝑚 terms occurring in 𝑞 and 𝑓 is a function that can be

efficiently computed from the information in the index postings

for 𝑤𝑖 plus some limited global statistics such as document sizes

and inverted list lengths. This means that scores 𝑓 (𝑑,𝑤𝑖 ) can be

precomputed, quantized, and stored in place of frequencies to speed

up query processing. We note that well-known families of ranking

functions such as Cosine measures, BM25, and some methods based

on language modeling satisfy this condition.

Given a ranking function 𝑠 and query 𝑞, a disjunctive top-𝑘 query

returns the 𝑘 highest scoring documents among those that contain

at least one of the query terms. Conversely, a conjunctive top-𝑘

query only selects from documents that contain all terms in 𝑞.

Current engines use highly complex ranking functions with

hundreds of features. For efficiency, they often perform an initial

selection of candidate documents using a top-𝑘 query on a simple

ranking function, for 𝑘 in the hundreds or thousands. Candidates

are then reranked using the complex ranker. While conjunctive top-

𝑘 queries are more efficient for the initial step, disjunctive queries

often give better results and are thus preferred in many scenarios.

2.2 Disjunctive Top-k Algorithms
Given the importance of disjunctive top-𝑘 queries, there has been

a lot of work on efficient algorithms. Approaches can be divided

into safe and unsafe methods. The former always return the same

top-𝑘 results as an exhaustive approach that scores all documents

containing at least one query term, while the latter may miss some

results but return most of the same, or similar quality, results. We

focus on safe methods. We also assume that the inverted index is

kept in main memory, or that at least enough data is cached to

eliminate disk access as a major bottleneck, which is a realistic

assumption for current large-scale search architectures.

Commonly studied safe algorithms includeMaxScore [35],WAND

[3], Block-Max WAND [12] and related methods such as BMM

[4, 11], VBMW [23] and other block-max based approaches [26],

JASS [8], the algorithm by Strohman and Croft [32], and methods

based on Fagin’s TA algorithm [13]. A recent study [25] shows that

block-max based approaches are very fast on common data sets

when 𝑘 is small (say, 𝑘 ≤ 100). However, for larger 𝑘 they tend to

slow down, while the simpler and older MaxScore often performs

best. We focus on the MaxScore approach, and show how to further

improve its speed for larger 𝑘 .

We now briefly describe MaxScore. For simplicity, we assume

that we already know the top-𝑘 threshold 𝑡ℎ for the query, and thus

the goal is to find all documents with score above 𝑡ℎ. Also, for each

term𝑤 in the inverted index, we have precomputed the maxscore
of𝑤 , defined as the maximum score 𝑓 (𝑑,𝑤) of any document 𝑑 .

We first sort the query terms in order of ascending maxscore.

Let this order be𝑤0,𝑤1, . . . ,𝑤𝑚−1. We select a maximum prefix of

terms 𝑤0, . . .𝑤𝑚′−1 such that

∑𝑚′−1
𝑖=0 𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 (𝑤𝑖 ) < 𝑡ℎ. We call

the inverted lists of these terms non-essential lists, and the remaining

ones essential lists. Clearly any document that scores at or above

the threshold must occur in at least one essential list. This leads to a

fairly simple algorithm that performs a disjunctive traversal of the

essential lists, and then makes lookups into the non-essential lists

for any documents found in the essential lists. Since the max scores

of inverted lists are usually inversely correlated with their lengths,

the non-essential lists typically contain most of the postings for

the query terms, assuming a large enough threshold 𝑡ℎ. Thus, we

reduce a disjunctive query to a disjunctive traversal of a much

smaller set of lists, plus some lookups into the other lists.

Note that at the surface the above also resembles the approach

by Fontoura et al. [14]. However, they used a heuristic to select an

initial set of terms that is processed first to estimate the threshold

used in the remaining phase. As discussed later, we can compute

a good threshold estimate before starting posting traversal, and

thus use a more systematic approach to minimize the number of

processed postings. Furthermore, as we show, this approach can be

generalized to use intersections of lists for additional speedup.

2.3 Using Intersections for Faster Querying
There is some previous work that uses precomputed, cached, or

on-the-fly generated intersections of two or more inverted lists

to accelerate query processing. Long and Suel [21] used a set of

training queries to select intersections that should be precomputed

and added to the index. Then incoming conjunctive top-𝑘 queries

are rewritten to incorporate available precomputed intersections.

Subsequent improvements include [7, 34, 41].

While the above work considers conjunctive queries, there is also

previous work that uses intersections to approximate disjunctive

queries, and in particular as a faster alternative to full disjunctions in

the context of candidate generation. Most relevant to our work are

the approaches in [2, 30, 37]. In particular, [30] describes candidate

generation in the Bing search engine, where a query is rewritten

into a number of conjunctions that are used as efficient access paths

for retrieving candidates. A different approach to candidate gen-

eration is described in [38], where intersections are precomputed

and placed into the first layer of a layered index. Finally, Vigna [2]

proposed a method called Model B that first attempts to process a

query as a pure intersection query, and then backs off into a more

and more disjunctive format if not enough results are produced.

The above approaches are unsafe as they cannot guarantee the

same results as an exhaustive query. This motivated the question we

address here, whether we can use intersections for safe disjunctive
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query processing. Our basic idea is to precompute and store certain

intersections as part of the index, and to then replace some of the

essential lists in MaxScore with intersections. Since intersections

tend to be much smaller than their constituent lists, this should

decrease the size of the essential lists that need to be traversed.

2.4 Top-𝑘 Threshold Estimation
Given a query 𝑞, disjunctive top-𝑘 threshold estimation is the prob-

lem of estimating the score of the 𝑘-th highest scoring document,

called the threshold. The goal is to get a good estimate much faster

than executing the query. A strong initial threshold can speed up

many common top-𝑘 query processing algorithms [12, 28, 39]. How-

ever, it is important to avoid overestimates, since that might result

in fewer than 𝑘 results being returned by the algorithm. Several

approaches for threshold estimation exist, including Taily [1], ran-

dom sampling [31, 33], machine learning [28], and quantile-based

techniques [10, 16, 27, 39]. We use a hybrid method combining

sampling and quantiles from [27], described in Section 3.3.

3 OUR APPROACH
We now describe our approach. We explain the basic idea with

examples, outline the necessary steps, and give details on each step.

3.1 Overview
Recall that in MaxScore, the inverted lists for the query terms are

divided into essential and non-essential lists based on maxscores.

By designating many low-maxscore, and thus usually fairly long,

lists as non-essential, we minimize the number of postings in the

essential lists. Put another way, we are trying to select the smallest

possible set of essential postings such that any document in the

top-𝑘 for the query must have at least one representative posting

in the set. Thus, essential lists are basically used as a compact and

efficient access path to retrieve all top-𝑘 candidates.

Consider a query 𝑞 with query terms𝐴, 𝐵, and𝐶 . We refer to the

corresponding inverted lists as [𝐴], [𝐵], and [𝐶]. Let their maxs-

cores be 5.0, 6.0, and 8.0, respectively, and let the top-𝑘 threshold

for 𝑞 be 12.0. Then the MaxScore approach would select [𝐶] as the
only essential lists, since any top-𝑘 result must contain 𝐶 .

Suppose we also have precomputed intersection lists, denoted as

[𝐴, 𝐵], [𝐴,𝐶], and [𝐵,𝐶]. A posting in an intersection list consists of

a docID and two scores, one for each list. While any top-𝑘 document

must contain 𝐶 , this is not sufficient – any top-𝑘 result must either

contain 𝐶 and 𝐴, or 𝐶 and 𝐵. This gives us the idea to select [𝐴,𝐶]
and [𝐵,𝐶] as essential lists, and to label all three lists [𝐴], [𝐵], and
[𝐶] as non-essential. The MaxScore algorithm then proceeds as

before, traversing the union of the essential structures, and making

lookups as needed into other lists on documents encountered during

traversal. We expect the two intersection lists to be much smaller

than [𝐶], leading to faster traversal. Moreover, for this example,

we do not need any lookups at all: if we find a document in both

essential lists, we know its complete score. If we only find it in one

list, say in [𝐴,𝐶] but not in [𝐵,𝐶], then we know that it cannot

have a posting in [𝐵] (and vice versa for the other case and [A]).

Suppose the threshold for the query is 10.0 instead. Then MaxS-

core would choose [𝐵] and [𝐶] as essential lists. With intersections,

we have several alternative choices. We could choose [𝐶] and [𝐴, 𝐵]
as essential lists, since any top-𝑘 result that does not contain𝐶 must

contain both 𝐴 and 𝐵. In this case, for any docID found in both

essential structures, no lookup is needed. For any docID only found

in [𝐴, 𝐵], we also need no lookup, since we know that 𝐶 cannot

occur. For any posting found only in [𝐶], we can first perform a

lookup into 𝐵. If this lookup retrieves a posting, no further lookup

on [𝐴] is needed as the document cannot have both𝐴 and 𝐵. Or we

could choose all three intersections as essentials, whichwould likely

result in even fewer essential postings (though the first solution is

still useful in cases where not all intersections are available).

Finally, assume an additional term 𝐷 with maxscore 9.0 and a

top-𝑘 threshold of 16.0. MaxScore would then choose [𝐶] and [𝐷]
as essential lists. Our approach could choose, e.g., [𝐷] and [𝐵,𝐶],
or [𝐶, 𝐷] and [𝐴, 𝐵], or [𝐵, 𝐷] and [𝐶], and so on. In summary, we

see that there is potential for improvements by using intersections

in a MaxScore approach. We also see that this can get complicated,

with many possible choices depending on the maxscores, top-𝑘

threshold, and available intersections, and thus we need a more

formal approach. We propose the following mechanisms, which are

described in detail in the following:

• Precomputing Intersections: At indexing time, we select

a set of intersections that should be created, subject to a space

limit. We should choose intersections commonly occurring

in queries that are much smaller than each of the two lists.

• Threshold Estimation: Given an incoming query, we need

a good and fast estimate of the top-𝑘 threshold to allow us

to select a small set of essential structures.

• SelectingEssential Structures:Given a threshold estimate,

maxscores for the query terms, and a list of available inter-

section of query terms, we select essential structures in a

way that minimizes query processing costs.

• Avoiding Unnecessary Lookups: During traversal of the

selected essential structures, we need to decidewhich lookups

into non-essential lists must be performed. The answer de-

pends on the threshold and the already accumulated partial

score of a document, as well as on the intersections selected

as essential structures, in a complex way, and we need a very

fast way to make these decisions.

3.2 Selecting Precomputed Intersections
First, we discuss how to select the intersections that are built at

indexing time. Given a space budget 𝐵, our goal is to select a set of

intersections of total size at most 𝐵 that maximizes the expected

query processing speedup. We estimate three quantities for each

considered intersection: (1) how likely the intersection will be use-

ful, 𝐹 , (2) the savings in query processing cost that occur when it is

used, 𝐶 , and (3) the amount of space taken up by the intersection,

𝑆 . Our goal is to maximize the expected benefit per space: 𝐹 ·𝐶/𝑆
We approximate the first quantity with a language model on a

set of training queries, to estimate the likelihood that a random

incoming query from the query distribution contains both terms

in the intersection. This is a rough approximation since the inter-

section may not actually be useful even if both terms are in the

query. The second quantity is approximated as the difference be-

tween the length of the shorter of the two lists and the intersection,

where the length of the intersection is scaled to account for the

fact that intersections are more expensive to traverse, per posting,

than single-term lists. Finally, the space 𝑆 is simply estimated as

the number of postings in the intersection.
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We then first identify a large set of candidates by taking inter-

sections with 𝐹 above a minimum threshold. We estimate 𝐶 and 𝑆

for these intersections, and greedily choose intersections based on

𝐹 ·𝐶/𝑆 , until the space budget for intersections is spent.

3.3 Threshold Estimation
Our threshold estimation uses a hybrid between sampling and

quantile-based methods from [27]. In particular, we implemented a

quantile-based method called 𝑄4

𝑘
that stores the 𝑘-th highest score

for each term in the collection, and for each pair, triple, and 4-tuple

of terms encountered in queries of a large training query trace.

We combined this with the sampling-based method from [27] as

follows: Given a query, we execute the quantile-based method. If

the full query is contained in one of the pairs, triples, or 4-tuples

that was stored, then the quantile-based method guarantees an

exact threshold. Otherwise, we execute the sampling-based method

(with an initial threshold equal to the one estimated by 𝑄4

𝑘
), and

take the maximum of the two estimates. The quantile-based method

never returns an overestimate. The sampling-based method can

overestimate, but the probability of doing so can be easily bounded

as discussed in [27], and this bound also applies to the hybrid.

Note that our overall query processing method is safe, i.e., always

returns the correct top-𝑘 results, even in the presence of overesti-

mates. The reason is that an overestimate is easily detected once

the query has been executed, as we end up with fewer than 𝑘 re-

sults above the threshold. In this rare case, we simply reexecute the

query using a baseline method, and all our results include this cost.

3.4 Selecting Essential Structures
Next, we discuss how to select essential index structures given a

top-𝑘 threshold estimate and a set of available intersections. This

task is more complex and requires some new definitions.

Result Classes and Score Bounds. Given an𝑚-term query 𝑞 = (𝑤0,

𝑤1, . . . ,𝑤𝑚−1), a result class is identified by a bitvector 𝑐 of length

𝑚, and consists of all documents that contain all 𝑤𝑖 where 𝑐 [𝑖]
is set to one, and none of the 𝑤𝑖 where 𝑐 [𝑖] is set to zero. For

example, if 𝑞 = (dog, cat,mouse); then result class (1, 0, 1) consists
of all documents that contain “dog” and “mouse” but not “cat”. For

simplicity, we use a binary vector 𝑐 as a synonym for its result class.

Thus, there are 2
𝑚

result classes for a query of length𝑚, where

the class defined by a vector of all zeros consists of documents

containing none of the query terms, and the class for a vector of

all ones consists of documents containing all the terms. The 2
𝑚

classes form a lattice with a partial order≪, where 𝑐1 ≪ 𝑐2 iff the

1-bit positions in 𝑐2 properly contain those in 𝑐1.

Given a query 𝑞 and a result class 𝑐 , let 𝑢 (𝑞, 𝑐) be an upper

bound on the score of any document in 𝑐 . The easiest way to get

such a bound is to add up the relevant maxscores, i.e., 𝑢 (𝑞, 𝑐) =∑
0≤𝑖<𝑚 & 𝑐 [𝑖 ]=1𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 (𝑤𝑖 ). Tighter upper bounds are possible,

for example by storing additional maxscore information for some

intersections, though this appears to give only minor improvements

in the bounds. It is reasonable to assume that 𝑐1 ≪ 𝑐2 implies

that 𝑢 (𝑞, 𝑐1) ≤ 𝑢 (𝑞, 𝑐2), for the types of bounds we can efficiently

compute – though the actual top score in 𝑐1 might sometimes be

higher than that in 𝑐2. We say that a result class 𝑐 is critical for 𝑞 if

𝑢 (𝑞, 𝑐) ≥ 𝑡ℎ, where 𝑡ℎ is the (estimated) top-𝑘 threshold of 𝑞.
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Figure 1: Result class lattice for query with terms 𝐴, 𝐵, 𝐶, 𝐷 ,
assuming a threshold of 16.0.

Index Structures and Retrieval of Result Classes. Given an incoming

query 𝑞, we have a set of available index structures for the query

terms, including single term lists, two-term intersections, and in

principle even intersections of more than two terms. An inverted list

for query term𝑤𝑖 contains a posting for every document containing

𝑤𝑖 . Translating this to result classes, this means that the list contains

a posting for every document that is in a result class 𝑐 with 𝑐 [𝑖] = 1.

Formally, we say that the index structure retrieves all these classes
𝑐 . Furthermore, an intersection list for terms 𝑤𝑖 and 𝑤 𝑗 retrieves

all result classes 𝑐 with 𝑐 [𝑖] = 𝑐 [ 𝑗] = 1, and correspondingly for

intersections of more than two terms.

Given these definitions, we can restate the task of selecting essen-

tial index structures. We say that a set of essential index structures

is safe for a query 𝑞 and threshold 𝑡ℎ if every critical result class is

retrieved by at least one structure. Note that this implies that we

can find all top-𝑘 results by traversing the essential structures and

then performing lookups into non-essential lists as needed. Thus,

our goal can be stated as follows:

Problem Definition: Given a query 𝑞, a top-𝑘 threshold 𝑡ℎ, and
a set of available index structures on the query terms, the goal is to
select a safe subset of the structures that minimizes the cost.

We assume here that the cost is simply the total number of

postings in the selected essential structures, with a weight factor to

account for the fact that postings from multi-term structures take

more time to process. The actual running time also includes the

cost of lookups into non-essential lists. However, the lookup cost is

hard to estimate, as the number of necessary lookups per posting

can differ significantly between lists. Thus, our goal is to select

essential structures of minimal total size, in the expectation that

smaller essential structures typically lead to faster overall times.

Example. Figure 1 shows an example of a query with terms 𝐴, 𝐵, 𝐶 ,

and 𝐷 . Critical result classes are shown in grey. An index structure

retrieves the result class with the corresponding label and any class

reachable from it. The left side shows a safe set of three intersections,

[𝐴, 𝐷], [𝐵,𝐶], [𝐵, 𝐷], assuming these are available in the index. The

right side shows another safe set where an intersection of three

terms, [𝐴,𝐶, 𝐷], is selected together with [𝐵,𝐶] and [𝐵, 𝐷].
Our approach is to treat this as a weighted set cover problem.

Here, the elements of the set cover problem are any critical classes

that are not reachable from other critical classes, while the sets are
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defined by the available index structures. A set associated with an

index structure contains a critical result class iff the index struc-

ture retrieves that class. In Figure 1, the set associated with [𝐵] is
𝑆𝐵 = {(𝐵𝐶), (𝐵𝐷)}. We could also include the rest of the critical

(shaded) classes containing 𝐵 in 𝑆𝐵 , but it is unnecessary as they

are reachable from those in 𝑆𝐵 . The goal is to cover everything at

least once while minimizing the total cost of the selected posting

lists (we expand on the chosen cost model in Section 4).

The general Set Cover problem is NP Complete [15], though our

version has additional structure that might make it easier. However,

the number of critical result classes that are part of the input to

our problem can be exponential in the number of query terms,

while the number of available index structures can be quadratic

for pairwise intersections, or higher for intersections of more than

two terms. Moreover, the complexity of the problem may depend

on the upper bounds for the result classes, e.g., if they are assumed

to be sums of term-wise maxscores, or if they could be arbitrary

values. A complexity analysis is deferred to future work.

We implemented two methods for selecting essential structures:

an exhaustive and a greedy one. Both start by first finding critical

classes not reachable from other critical classes, and then identifying

the subsets that correspond to the available single-term or pairwise

index structures. The exhaustive method considers all possible

solutions to find the one minimizing cost. This is quite fast for short

queries and cases where only few intersections are available, but

slow in other cases. The greedy method uses the standard greedy

approximate algorithm for Set Cover. We found this to be highly

accurate for the case where only single terms and pairs of terms

are considered. We discuss the results in the experimental section.

3.5 Avoiding Unnecessary Lookups
Next, we describe our policies for performing lookups into the non-

essential lists. We start by describing lookup policies for the stan-

dard MaxScore algorithm, with only single-term index structures.

Suppose you have a 4-term query with terms 𝐴, 𝐵, 𝐶 , and 𝐷 , and

maxscores 4.0, 5.0, 6.0, and 7.0, respectively. If the threshold is, say,

13.0, then MaxScore will select [𝐶] and [𝐷] as essential lists. When

a document is found in the essential lists, we consider whether to

look up its scores in the non-essential lists, usually in order from

highest to lowest maxscore. If the partial score accumulated from

the essential lists is less than 4.0, then no lookups are needed as the

threshold cannot be reached. If the score is higher, then at least one

more lookup is needed. In general, before each lookup, we check the

partial score accumulated so far, and the maximum possible score

from further lookups (the sum of the maxscores of the remaining

lists). If the sum of these two is less than the threshold, we can

discard the document without further lookups.

This becomes more complicated if we allow intersections as es-

sential lists. There are two challenges: First, while traversing the

essential lists, there is additional overhead as a document may be

encountered in two overlapping intersections, say in [𝐵, 𝐷] and in

[𝐶, 𝐷]. This needs to be detected so that we do not add up the score
from [𝐷] twice, creating some overhead. Second, rules for avoiding

lookups aremore complex. As in standardMaxScore, we do not need

to do any lookups into single-term lists that are essential structures.

However, suppose [𝐵, 𝐷] is an essential lists, but the document be-

ing evaluated was not found in it. Then we know that the document

does not contain both 𝐵 and 𝐷 , but it could contain either one. If

we know that the document contains 𝐵, say because either [𝐵] or
[𝐵,𝐶] is another essential list containing the document, or we have

done a lookup into [𝐵], then no lookup in [𝐷] is needed. Thus,
intersections result in more complex rules about what lookups are

necessary, and more complex bounds for the maximum score from

further lookups – if [𝐶] and [𝐵, 𝐷] are essential, then a document

discovered in [𝐶] but not in [𝐵, 𝐷] has a maximum score from fur-

ther lookups of𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 (𝐴) +𝑚𝑎𝑥 (𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 (𝐵),𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 (𝐷)),
as it cannot contain both 𝐵 and 𝐷 .

We designed two methods for dealing with these challenges.

The first one, eager, focuses on the first challenge, at the cost of

additional lookups. It treats all selected single-term essential lists

as in standard MaxScore, aggregating their essential scores and

then performing lookups into the other lists, while ignoring the

existence of any essential intersections. If the same document also

occurs in one of the essential intersections, then it will be processed

again separately, with additional lookups as needed. However, in-

tersections are usually shorter than single-term lists, so that most

documents are found only in single-term lists or in at most one

essential intersection. Thus, the amount of extra work is limited.

After aggregating results for single-term essential lists, we aggre-

gate the results from each intersection, one by one, with lookups

into non-essential single-term lists not in the intersection. Finally,

the different result sets are merged, and any duplicates removed.

The second approach, state, focuses on the other challenge, avoid-
ing lookups as much as possible, while speeding up the logic for

deciding what lookups are needed. It maintains a lookup state for
any document found in the essential structures, which is an integer

in [(𝑛+1) ·2𝑛] for an 𝑛-term query. Terms are ordered from highest

to lowest maxscore, and lookups occur in this order. The state en-

codes in its higher bits which terms have already been considered

for lookups (a number from 0 to 𝑛 as lookups occur in a fixed order),

and in the lower 𝑛 bits which lookups retrieved a posting.

At the start of a query, after essential structures have been se-

lected, we precompute two small arrays indexed by lookup state,

one called next for telling us which lookup to consider next, and one
called mps that stores the maximum possible additional score from

further lookups, given the current state. All the logic for deciding

what lookups to perform is precomputed into these tables, which

are consulted as we evaluate a document. In particular, we check

mps to see if the maximum possible scores in the current state

could lead to a top-𝑘 result. If not, we terminate lookups for this

document; otherwise, we check next to decide on the next lookup,

update the lookup state, and continue.

Experiments showed eager to be faster for up to three terms,

while state is faster otherwise. This is because the logic of state is
more complex, which causes some overhead, including computing

next and mps tables, but the potential savings due to avoiding

unnecessary lookups increase with the number of query terms.

Thus, we used a hybrid, with the eager version for short queries,

and the state version otherwise.We include the pseudocode for both

algorithms in Appendix A. We also encourage interested readers to

study the implementation details on Github.
1

1
https://github.com/elshize/using-conjunctions-docker
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Table 1: Accuracy of greedy selection for different 𝑘 .

Collection Queries 10 100 1000 10 000

ClueWeb09B TREC 2005 0.94 0.94 0.94 0.95

ClueWeb09B TREC 2006 0.92 0.91 0.89 0.89

ClueWeb12B TREC 2005 0.94 0.93 0.93 0.95

ClueWeb12B TREC 2006 0.90 0.88 0.87 0.86

4 EXPERIMENTS
We now analyze the performance of the proposed methods with an

extensive experimental evaluation in a realistic and reproducible

setting, using state-of-the-art baselines and standard data sets.

Setup. All methods were implemented based on the PISA frame-

work [24], written in C++ and compiled with GCC 8.3 with highest

optimization settings. Tests are performed on a machine with 8 Intel

Core i7-4770 3.50GHz Haswell cores, with 32GiB RAM, running

Linux 4.15. Only a single core is used in each run. Inverted indexes

were saved to disk after construction, and memory-mapped for

querying; thus, there are no hidden costs due to loading of addi-

tional data structures in memory. Before timing the queries, we

ensure that all required single-term posting lists are in memory.

We precomputed and stored different sets of pairwise structures

(intersections) according to the algorithm in Section 3.2. Due to

their larger size, these structures were not loaded into memory, but

instead kept on an SSD drive and fetched during query processing.

We used a Samsung 860 EVO 2.5 Inch SATA III Internal SSD drive

with sequential read speed up to 550 MB/s and up to 98K random

read IOPS. This is a low-cost drive, at about $200 for the 2TB version,

and not as fast as many available NVMe drives. Nonetheless, we

found the overhead SSD accesses to be small. Complete source code,

data, and a docker image will be made available at publication time.

Datasets. We used two standard text collections, ClueWeb09B and

ClueWeb12B, with 50.2𝑀 and 52.3𝑀 documents. Collections were

parsed using PISA, with terms stemmed using the Porter2 stemmer.

Data was then exported to Common Index File Format [18] files,

which are the input to our scripts. This makes it easier to repro-

duce results, or to use indexes parsed by other software such as

Apache Lucene. For each collection, we built one inverted index

with frequencies (non-quantized), and one with quantized scores

(quantized) using 8-bit linear quantization. Posting docIDs and fre-

quencies were encoded using SIMD-BP128 [17]. To evaluate query

processing speed, we use TREC 2005 and TREC 2006 Terabyte Track
Efficiency Task data. From each, we selected 1000 random queries

with 2 to 16 terms. We also used the AOL query log of 20𝑀 queries

as training data for threshold estimation and to select intersections.

Query Cost Model. Recall that traversing intersections is more ex-

pensive than traversing single-term posting lists, due to having two

frequencies or quantized scores per posting. We found empirically

that multiplying the number of postings by 1.25 for intersections

gives the best results, and thus we use this factor to select intersec-

tions at indexing time and essential structures at query time.

4.1 Preliminary Experiments
We start with an initial set of experiments to explore the impact of

threshold estimation and greedy selection on performance. Due to

space constraints, we cannot give results for all data sets.

Table 2: Average query times (in ms) for the Max-Inter-All
algorithm with 𝑘 = 1000, with selections performed by the
greedy and exhaustive approaches. We show query times
without selection cost (Time) and with selection cost (+Sel).

Greedy Exhaustive

Collection Queries Time +Sel Time +Sel

ClueWeb09B TREC 2005 9.22 9.23 9.16 9.62

ClueWeb09B TREC 2006 11.16 11.17 10.77 11.77

ClueWeb12B TREC 2005 8.19 8.21 7.99 8.44

ClueWeb12B TREC 2006 9.9 9.91 9.39 10.37

Table 3: Average number of postings in the essential lists 𝑃𝐸 ,
and lookups into the non-essential lists 𝐿𝑁𝐸 for 𝑘 = 1000 on
ClueWeb09B.

TREC05 TREC06
𝑃𝐸 𝐿𝑁𝐸 𝑃𝐸 𝐿𝑁𝐸

MaxScore 1 232 970 146 952 1 508 983 269 374

MaxScore-T 1 063 127 101 341 1 272 617 206 692

Max-Inter-x2 470 384 105 473 791 108 182 588

Max-Inter-x5 420 660 85 707 669 347 160 966

Max-Inter-x10 392 747 74 285 582 454 140 337

Max-Inter-x15 385 677 65 346 512 719 123 677

Max-Inter-x20 375 209 60 222 482 628 111 823

Max-Inter-All 230 483 19 056 125 560 23 022

Threshold Estimation. As discussed in Section 3.3, we used a hybrid

of random sampling and quantile methods, building on work in

[27] and [39]. Our quantile method, 𝑄4

𝑘
-𝑙𝑜𝑔, stores top-𝑘 quantile

information for all terms in the index, and for all pairs, triples, and

4-tuples encountered in a large query log. Following [27], we used

the AOL query log, resulting in about 13 million unique term pairs,

60 million unique triples, and 340 million 4-tuples. This results in

space overhead of about 2GB, though this could be significantly

reduced at little loss in precision by selecting fewer triples and

4-tuples. For random sampling, we chose a sample size of 0.5% and

limited the expected overestimation rate to 1% (see [27] for more

details). Overestimates are detectedwhen fewer than𝑘 results above

the threshold are returned. In this case, the query is rerun with

MaxScore, similar to [27, 28], and the cost of doing so is included

in the reported running times.

Table 7 in Appendix B shows the performance of our estimator

using the mean under-prediction fraction (MUF) measure proposed

in [28]. The method performs very well on our data, with mean

estimates mostly above 90% of the real threshold, and even better

numbers for larger 𝑘 . Table 8 in Appendix B shows the cost of

threshold estimation in microseconds for different configurations.

As expected, costs increase with 𝑘 and query length. Results on

other data sets were very similar.

Selecting Essential Structures. Next, we evaluate our greedy essen-

tial list selection algorithm and compare it against the exhaustive

approach. Due to exponential complexity of the latter, we could

only perform this comparison for queries with up to five terms.

As shown in Table 1, the greedy algorithm made exactly the same

selections of essential structures between 86% to 95% of the time,

depending on collection, query log, and 𝑘 . Table 2 furthermore
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Table 4: Average query times (in ms) for top-1000 on non-
quantized indexes, using estimated thresholds.

Number of query terms

Avg
2 3 4 5 6+

ClueWeb09B TREC 2005

VBMW-T 9.23 15.91 22.58 38.82 79.63 22.16

MaxScore-T 19.46 20.58 22.97 30.02 36.6 22.91

Max-Inter-x2 9.32 16.41 19.36 25.98 33.46 16.34

Max-Inter-x5 8.98 14.88 17.99 25.39 33.02 15.52

Max-Inter-x10 8.9 14.31 16.64 23.48 31.67 14.84

Max-Inter-x15 8.63 14.05 16.14 23.25 30.55 14.46

Max-Inter-x20 8.5 13.94 16.18 22.1 30.51 14.28
Max-Inter-All 7.68 9.63 10.86 13.68 22.93 10.6

ClueWeb09B TREC 2006

VBMW-T 8.15 16.75 29.1 46.03 115.49 41.35

MaxScore-T 16.19 20.59 27.63 37.2 56.59 30.88

Max-Inter-x2 7.92 17.3 24.78 33.58 55.33 27.2

Max-Inter-x5 7.63 15.79 23.36 30.67 52.59 25.46

Max-Inter-x10 6.39 14.9 21.48 28.98 50.63 23.95

Max-Inter-x15 6.24 14.52 20.82 27.86 49.55 23.3

Max-Inter-x20 6.16 14.2 20.06 26.95 49.09 22.8
Max-Inter-All 5.0 8.6 13.68 18.2 37.69 16.16

ClueWeb12B TREC 2005

VBMW-T 10.71 16.76 21.96 35.15 89.09 23.43

MaxScore-T 22.15 23.38 25.17 30.79 44.8 25.83

Max-Inter-x2 7.77 14.12 16.57 23.53 32.07 14.34

Max-Inter-x5 7.79 12.8 15.05 22.2 30.29 13.5

Max-Inter-x10 7.77 12.17 13.91 21.51 29.99 13.07

Max-Inter-x15 7.69 11.88 13.57 20.07 29.37 12.73

Max-Inter-x20 7.62 11.74 13.6 19.5 28.68 12.55
Max-Inter-All 7.17 8.06 9.09 12.11 21.18 9.41

ClueWeb12B TREC 2006

VBMW-T 5.35 11.85 22.17 34.72 88.34 31.15

MaxScore-T 14.39 17.1 25.28 32.65 50.17 27.24

Max-Inter-x2 5.3 14.1 23.24 29.04 48.22 23.55

Max-Inter-x5 4.99 13.6 22.13 27.19 46.43 22.48

Max-Inter-x10 4.87 12.4 19.84 25.52 44.99 21.09

Max-Inter-x15 4.78 11.78 18.78 24.29 43.68 20.22

Max-Inter-x20 4.78 11.28 18.48 24.5 44.32 20.18
Max-Inter-All 3.94 6.73 13.34 16.48 33.42 14.36

shows that the exhaustive method results in only minor improve-

ments in running time that are more than erased by extra selection

cost. Thus, potential benefits of using a smarter algorithm for selec-

tion are very limited. Note that greedy selection costs are included

in all subsequent results. Also, selection is only performed once

in our approach, right after threshold estimation. While it might

be beneficial to rerun selection once the actual top-𝑘 threshold

grows beyond the initial estimate during query processing, this

also creates additional overheads that limit the possible gains.

Table 5: Average query times (in ms) for top-1000 on quan-
tized indexes, using estimated thresholds.

Number of query terms

Avg
2 3 4 5 6+

ClueWeb09B TREC 2005

VBMW-T 6.5 13.8 20.41 35.49 75.02 19.44

MaxScore-T 7.63 8.96 11.65 15.98 21.24 10.62

Max-Inter-x2 5.47 6.86 9.22 13.15 19.94 8.42

Max-Inter-x5 4.72 6.3 8.42 12.52 18.96 7.7

Max-Inter-x10 4.36 6.03 7.59 11.48 18.76 7.25

Max-Inter-x15 4.0 5.93 7.36 11.39 18.17 6.98

Max-Inter-x20 3.82 5.86 7.29 10.56 17.21 6.71
Max-Inter-All 2.85 3.97 4.32 6.3 13.32 4.64

ClueWeb09B TREC 2006

VBMW-T 6.64 14.4 26.29 42.17 108.85 37.99

MaxScore-T 6.55 9.51 14.38 20.29 35.59 16.75

Max-Inter-x2 6.34 7.77 12.52 18.38 35.54 15.53

Max-Inter-x5 5.97 7.12 11.49 16.05 33.63 14.33

Max-Inter-x10 4.59 6.74 10.48 15.35 32.46 13.44

Max-Inter-x15 4.27 6.54 9.85 13.95 31.92 12.87

Max-Inter-x20 3.78 6.36 9.52 13.49 30.96 12.41
Max-Inter-All 2.47 3.78 5.53 8.22 23.3 8.33

ClueWeb12B TREC 2005

VBMW-T 5.12 10.46 15.17 26.01 61.52 15.12

MaxScore-T 7.34 7.95 9.72 13.64 19.79 9.6

Max-Inter-x2 4.29 5.88 7.8 12.06 18.81 7.26

Max-Inter-x5 3.93 5.23 6.81 11.01 17.48 6.58

Max-Inter-x10 3.71 4.95 6.24 10.67 17.9 6.34

Max-Inter-x15 3.49 4.84 6.12 9.98 17.11 6.07

Max-Inter-x20 3.34 4.77 6.04 9.59 16.53 5.89
Max-Inter-All 2.72 3.32 3.67 5.86 12.29 4.19

ClueWeb12B TREC 2006

VBMW-T 3.99 10.28 19.42 31.27 82.54 28.25

MaxScore-T 5.01 8.14 12.78 17.12 30.65 14.35

Max-Inter-x2 3.72 6.65 11.59 14.71 29.77 12.93

Max-Inter-x5 3.36 6.33 10.96 13.38 28.54 12.2

Max-Inter-x10 3.09 5.87 9.55 12.57 27.79 11.44

Max-Inter-x15 2.91 5.61 8.89 11.78 26.96 10.91

Max-Inter-x20 2.99 5.3 8.51 11.51 26.84 10.69
Max-Inter-All 2.0 3.22 5.88 7.34 20.87 7.6

4.2 Comparison of all Algorithms
We now compare the performance of our approach to several base-

lines. We implemented the following MaxScore-based methods:

(1) MaxScore is an implementation of the MaxScore algorithm,

with initial threshold 0 and thus no threshold estimation.

(2) MaxScore-T is a version of Maxscore where threshold esti-

mation is used to select an initial set of essential lists. When

the threshold grows beyond the initial estimate, the algo-

rithm recomputes the selection of essential lists.

(3) Max-Inter-xN uses the greedy algorithm to select both

single-term lists and intersections as essential lists, based
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Figure 2: Query times for selected algorithms run on the
non-quantized ClueWeb09B index with TREC 2005 queries.
The middle bar indicates the median value, while the boxes
extend to the first and third quartiles. Whiskers extend to
the 5-th and the 95-th percentiles. Means are marked by di-
amonds. Outliers are removed for better readability.

Table 6: Average query times (in ms) for Max-Inter-x20 (𝑘 =

1000) with pairs stored on SSD and in main memory.

Non-quantized Quantized

Collection Queries SSD Memory SSD Memory

ClueWeb09B TREC 2005 14.28 13.98 6.71 6.44

ClueWeb09B TREC 2006 22.8 22.43 12.41 12.06

ClueWeb12B TREC 2005 12.55 12.4 5.89 5.64

ClueWeb12B TREC 2006 20.18 19.47 10.69 10.32

on the initial threshold estimate. The selected structures are

then used during the entire query. Intersections are chosen

from a large set of precomputed pairwise intersections, as ex-

plained in Section 3.2, with a space budget of 𝑁 × |𝐼 | where
|𝐼 | is the size of the inverted index. We report results for

𝑁 ∈ {2, 5, 10, 15, 20}. If the selection includes only single-

term lists, we use VBMW-T (see below) for two-term queries

and MaxScore-T otherwise, as Max-Inter provides no im-

provements without intersections. Intersections are fetched

from SSD, and we include this cost in all reported results.

(4) Max-Inter-All is the case of Max-Iter-xNwhere all pairwise

intersections are available, i.e., unlimited space budget.

Essential List Sizes and Lookups. In Table 3, we show two statis-

tics that drive the cost of our approach: the number of essential

postings traversed (𝑃𝐸 ) and random lookups into non-essential lists

(𝐿𝑁𝐸 ). We see that MaxScore-T significantly reduces both 𝑃𝐸 and

𝐿𝑁𝐸 compared to MaxScore by using an initial threshold estimate.

Recall that essential structures in Max-Inter methods are selected to

minimize the number of essential postings. Thus, the more precom-

puted intersections are available, the fewer essential postings are

traversed. Moreover, we see that 𝐿𝑁𝐸 also significantly decreases

as 𝑃𝐸 gets smaller. While Max-Inter-x20 reduces both statistics

significantly over the baselines, Max-Inter-All shows additional

reductions of up to 50% for 𝑃𝐸 and up to 80% for 𝐿𝑁𝐸 .

Performance of all Methods. We also implemented two block max-

based methods, VBMW [23] and a version of VBMW with initial

estimated threshold called VBMW-T. Our experiments showed that

MaxScore-T and VBMW-T always significantly outperformedMaxS-

core and VBMWwithout initial threshold, and thus in the following

we only report numbers for MaxScore-T and VBMW-T.

Tables 4 and 5 show average query times across all methods on

non-quantized and quantized indexes, for different query lengths.

We see that VBMW-T is fast for very short queries. Also, MaxScore-

based methods benefit more from using a quantized index, and

for that case significantly outperform VBMW-T. Our new Max-

Inter methods achieve promising improvements over the baselines

for larger 𝑁 (such as 𝑁 = 20), of about 25 to 35%. Improvements

are even larger for the idealized case where all intersections are

available, indicating that a better algorithm for selecting which

intersections to precompute might give further benefits.

In Figure 2 we show the distribution of query processing times

for different algorithms as a box-and-whiskers plot. As we see,

our new methods do not just outperform the baselines in terms of

average times, but also improve mean and 75- and 95-percentile

tail latencies.

Further extensive experiments (see Appendix C) show results

obtained by using idealized clairvoyant threshold estimates, i.e.,

estimates equal to the exact threshold obtained at zero cost. This

increases the performance advantage of our new methods over

baselines to about 30 to 45%, suggesting that our results would

benefit from further progress on threshold estimation techniques.

Other results how the cost of threshold estimation and essential

list selection for the different data sets. Overall, these costs are

low (on the order of a few percent) compared to overall query

execution costs. Finally, results for different values of 𝑘 show how

our methods do particularly well for larger 𝐾 , while still obtaining

more moderate benefits for small 𝑘 .

Finally, Table 6 shows the overhead of fetching intersections

from SSD. As we see, running times would only be reduced by

a small amount if we could hold all intersections in main mem-

ory. This justifies our decision to store large sets of precomputed

intersections on a low-cost SSD drive.

To summarize, our new results show significant improvements in

running time over state-of-the-art baselines, with the potential for

additional improvements through better selection of precomputed

intersections or improved threshold estimation.

5 DISCUSSION AND CONCLUDING REMARKS
In this paper, we have described a new approach for optimizing safe

disjunctive top-𝑘 query processing. Our approach is a novel and

interesting generalization of the MaxScore algorithm that allows

precomputed pairwise intersections to be used as essential lists. The

experimental results showed the potential for significant improve-

ments in performance over the standard MaxScore approach. While

the improvements required a significant amount of precomputed

data structures, we showed that this can be efficiently addressed by

storing the structures on a low-cost SSD drive.
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A ALGORITHMIC DETAILS
Algorithm 1 shows the pseudocode of the "eager" MaxInter algo-

rithm. The UnionLookup algorithm used in lines 9 and 11 is a

slightly modified version of MaxScoreT, where the essential and

non-essential lists stay the same throughout the entire run of the al-

gorithm. This modification generalizes it to work with precomputed

intersections of of an arbitrary number of terms.

Algorithm 2 shows the pseudocode of the "state" MaxInter al-

gorithm. Algorithm 3 illustrate the process of generating the two

auxiliary tables used in the "state" algorithm. These tables are pre-

computed once per query.

Algorithm 1 Eager Inter algorithm

1: 𝐸 ← essential query terms

2: 𝑁 ← non-essential terms sorted by decreasing maxscore

3: 𝐼 ← set of selected pair intersections

4: 𝑈 ← set of selected single-term lists

5: 𝜃 ← estimated score threshold

6: function EagerInter(𝐸, 𝑁 , 𝐼 ,𝑈 , 𝑘 , 𝜃 )

7: if 𝐼 = ∅ then ⊲ no pair intersections were selected

8: return MaxScore(𝐸, 𝑁 , 𝜃 ) ⊲ fall back to MaxScore

9: 𝑅 ← UnionLookup(𝑈 , 𝑁 −𝑈 , 𝜃 )

10: for 𝐿 ∈ 𝐼 do
11: 𝑅 ← 𝑅 + UnionLookup(𝐿, 𝑁 − 𝐿, 𝜃 )
12: 𝑅 ← RemoveDuplicateDocs(R) ⊲ always keep higher score

13: 𝑅 ← SortByScoreDescending(R)

14: return {𝑟1, 𝑟2, . . . , 𝑟𝑘 }

Algorithm 2 State Inter algorithm

1: 𝑙𝑒 ← DAAT union of the selected essential posting lists

2: 𝐿𝑛 ← list of the selected non-essential posting lists

3: 𝑀 ← maximum possible score table

4: 𝑁 ← next lookup table

5: |𝑞 | ← number of terms in the query

6: function StateInter(𝑙𝑒 , 𝐿𝑛 ,𝑀 , 𝑁 , |𝑞 |)
7: 𝑅 ← size-bounded min-heap for accumulating top results

8: 𝑀 ← (1 ≪ |𝑞 |) − 1
9: 𝑆0 ← |𝐸 | ≪ |𝑞 |
10: while NonEmpty(𝑈 ) do
11: 𝑑 ← DocId(𝑙𝑒 )

12: 𝑠 ← Score(𝑙𝑒 )

13: 𝑆 ← State(𝑙𝑒 ) | ( |𝐸 | ≪ |𝑞 |)
14: 𝑛 ← 𝑁 [𝑆 ]
15: while 𝑛 ≥ 0 andWouldEnter(𝑅, 𝑠 +𝑀 [𝑆 ]) do
16: 𝑙 ← 𝐿 [𝑛 − |𝐸 | ]
17: NextGEQ(𝑙 )

18: if DocID(𝑙 ) = 𝑑 then
19: 𝑠 ← 𝑠+ Score(𝑙 )
20: 𝑆 ← 𝑆 | (1 ≪ 𝑛)
21: 𝑆 ← (𝑠 & ( (1 ≪ |𝑞 |) − 1)) + ( (𝑛 + 1) ≪ |𝑞 |)
22: 𝑛 ← 𝑁 [𝑆 ]
23: function State(𝑙𝑒 )

24: 𝑠 ← 0

25: for 𝑖 = 0, 1, . . . , |𝑞 | do
26: if term 𝑖 is part of union 𝑙𝑒 then
27: 𝑠 ← 𝑠 | (1 ≪ 𝑖)

return 𝑠

Algorithm 3 Computation of lookup tables

1: 𝑡0, 𝑡1, . . . , 𝑡𝑘−1 ← essential query terms

2: 𝑡𝑘 , 𝑡𝑘+1, . . . , 𝑡𝑛−1 ← non-ess. terms sorted by decreasing maxscore

3: 𝐼 ← set of selected pair intersections

4: function Unnecessary(p, s)

5: if ((1 ≪ 𝑝) & 𝑠) > 0 then return true

6: for 𝑘 ← {𝑘 | (𝑝, 𝑘) ∈ 𝐼 } do
7: if ( (1 ≪ 𝑘) & 𝑠) > 0 then return true

8: return false
9: function PrecomputeNextLookup

10: for 𝑡 = 𝑘, 𝑘 + 1, . . . , 𝑛 − 1 do
11: for 𝑠 = 0, 1, . . . , 2𝑛 − 1 do
12: 𝑝 ← 𝑡

13: while 𝑝 < 𝑛∧ Unnecessary(𝑝 , 𝑠) do
14: 𝑝 ← 𝑝 + 1
15: if 𝑝 = 𝑡 then 𝑝 ← −1
16: 𝑁 (𝑡≪𝑛)+𝑠 ← 𝑝

17: return 𝑁

18: function MaximumPossibleScore

19: for 𝑖 = 𝑛,𝑛 − 1, . . . , 0 do
20: for 𝑗 = 2

𝑛 − 1, 2𝑛 − 2, . . . , 0 do
21: 𝑠 ← (𝑖 ≪ 𝑛) + 𝑗
22: 𝑛𝑡 ← 𝑁𝑠

23: if 𝑛𝑡 = −1 then𝑀𝑠 ← 0

24: else
25: 𝑖𝑎 ← (𝑛𝑡 + 1) ≪ 𝑛) + ( 𝑗 | (1 ≪ 𝑛𝑡 ))
26: 𝑎 ←MaxScore(i) +𝑀𝑖𝑎

27: 𝑖𝑏 ← (𝑖 + 1) ≪ 𝑛) + 𝑗
28: 𝑏 ← 𝑀𝑖𝑏

29: 𝑀𝑠 ← max(𝑎,𝑏)
30: return𝑀

B THRESHOLD ESTIMATION
In Table 7, we can see mean under-prediction fraction (MUF) results

for several 𝑘 values, and for different query lengths when thresh-

olds are estimated on ClueWeb09B and for TREC 2005. Average
threshold estimation cost in microseconds when thresholds are

estimated on ClueWeb09B and for TREC 2005 are shown in Table 8.

Table 7: MUF of threshold estimates for different query
lengths and 𝑘 on ClueWeb09B, for TREC 2005 queries.

k 2 3 4 5 6+ avg

10 0.87 0.87 0.87 0.86 0.84 0.86

100 0.92 0.91 0.90 0.90 0.89 0.90

1000 0.96 0.95 0.94 0.95 0.95 0.95

10 000 0.96 0.97 0.96 0.96 0.96 0.96

Table 8: Average cost (in µs) of threshold estimates on
ClueWeb09B, for TREC 2005 queries.

k 2 3 4 5 6+ avg

10 110 110 105 148 184 119

100 119 121 124 174 226 135

1000 150 151 176 227 317 177

10 000 203 242 303 399 558 279
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C CLAIRVOYANT THRESHOLD ESTIMATES
Tables 9 and 10 show average query times across all methods on non-

quantized and quantized indexes, for different query lengths when

clairvoyant threshold estimates are employed. All methods benefits

from a better threshold estimate. When compared to Tables 4 and 5,

we can see that our proposed methods, Max-Inter, achieve even

better improvements over the baselines, sometimes requiring a

smaller space budget to obtain a similar speedup.

Table 9: Average query times (in ms) for 𝑘 = 1000 on
non-quantized ClueWeb09B and ClueWeb12B indexes, us-
ing clairvoyant (exact) thresholds.

Number of query terms

Avg
2 3 4 5 6+

ClueWeb09B TREC 2005

VBMW-T 8.85 14.9 20.47 35.03 69.14 20.1

MaxScore-T 19.04 19.54 21.84 28.24 32.84 21.77

Max-Inter-x2 9.12 15.37 17.96 24.24 29.76 15.27

Max-Inter-x5 8.65 13.72 16.26 22.69 28.9 14.19

Max-Inter-x10 8.43 12.89 14.99 20.62 27.18 13.36

Max-Inter-x15 8.28 12.67 14.68 20.51 26.4 13.11
Max-Inter-x20 8.62 12.95 14.56 18.99 26.13 13.14

Max-Inter-All 7.31 8.26 9.62 12.04 19.73 9.47

ClueWeb09B TREC 2006

VBMW-T 7.57 15.23 26.62 40.76 99.33 36.42

MaxScore-T 15.57 19.1 25.44 33.72 50.87 28.27

Max-Inter-x2 7.43 15.82 22.36 29.78 48.42 24.28

Max-Inter-x5 7.14 14.5 20.62 25.85 44.96 22.21

Max-Inter-x10 5.91 13.53 19.2 24.63 43.46 20.96

Max-Inter-x15 5.73 13.11 19.08 23.87 44.08 20.79

Max-Inter-x20 5.66 12.73 17.85 22.71 41.74 19.77
Max-Inter-All 4.48 7.27 11.36 14.8 31.34 13.47

ClueWeb12B TREC 2005

VBMW-T 7.41 11.34 15.98 26.24 57.7 16.07

MaxScore-T 18.24 19.51 19.88 24.21 30.3 20.5

Max-Inter-x2 7.35 13.22 15.56 21.41 27.3 13.15

Max-Inter-x5 7.38 11.84 14.05 20.11 25.9 12.34

Max-Inter-x10 7.44 11.32 12.84 19.44 24.51 11.86

Max-Inter-x15 7.3 10.85 13.72 19.34 27.48 12.1

Max-Inter-x20 7.21 10.66 12.46 17.42 23.76 11.3
Max-Inter-All 6.77 7.06 8.2 10.91 16.81 8.35

ClueWeb12B TREC 2006

VBMW-T 5.03 10.93 19.78 30.21 76.21 27.32

MaxScore-T 13.5 16.27 23.28 29.76 44.73 24.93

Max-Inter-x2 4.89 13.28 20.44 26.08 42.0 20.98

Max-Inter-x5 4.66 12.57 19.58 23.88 39.95 19.83

Max-Inter-x10 4.52 11.45 17.71 22.55 37.69 18.45

Max-Inter-x15 4.47 10.72 16.9 21.24 37.15 17.75

Max-Inter-x20 4.44 10.2 16.07 20.79 36.84 17.29
Max-Inter-All 3.58 5.75 11.36 13.89 26.96 11.97

Table 10: Average query times (in ms) for top-1000 on quan-
tizedClueWeb09B andClueWeb12B indexes, using clairvoy-
ant (exact) thresholds.

Number of query terms

Avg
2 3 4 5 6+

ClueWeb09B TREC 2005

VBMW-T 6.1 12.71 18.18 31.41 63.19 17.19

MaxScore-T 7.35 8.31 10.43 14.33 18.05 9.71

Max-Inter-x2 5.19 6.9 8.2 11.7 16.33 7.68

Max-Inter-x5 4.47 6.22 7.35 10.72 15.41 6.92

Max-Inter-x10 4.14 5.89 6.58 9.5 14.44 6.38

Max-Inter-x15 3.76 5.81 6.48 9.54 13.95 6.15

Max-Inter-x20 3.64 5.78 6.28 8.47 13.68 5.93
Max-Inter-All 2.79 3.86 3.4 5.12 10.4 4.06

ClueWeb09B TREC 2006

VBMW-T 5.98 13.31 23.5 36.51 91.92 32.88

MaxScore-T 8.4 8.8 12.75 17.56 30.66 15.14

Max-Inter-x2 5.76 7.11 10.8 15.23 29.54 13.24

Max-Inter-x5 5.43 6.53 9.73 12.4 27.04 11.87

Max-Inter-x10 4.07 6.11 8.9 11.69 25.87 11.01

Max-Inter-x15 3.81 5.89 8.4 10.53 25.41 10.52

Max-Inter-x20 3.5 5.71 8.07 10.43 24.24 10.11
Max-Inter-All 2.16 3.25 4.46 5.97 17.53 6.46

ClueWeb12B TREC 2005

VBMW-T 4.73 9.76 13.86 23.49 53.0 13.56

MaxScore-T 7.01 7.42 8.88 12.17 16.45 8.76

Max-Inter-x2 3.98 5.89 7.1 10.34 14.83 6.5

Max-Inter-x5 3.78 5.21 6.17 9.34 13.87 5.93

Max-Inter-x10 3.58 4.95 5.53 8.9 12.99 5.56

Max-Inter-x15 3.39 4.8 5.44 8.24 12.89 5.36

Max-Inter-x20 3.26 4.72 5.39 7.92 12.54 5.22
Max-Inter-All 2.65 3.21 3.05 4.79 8.74 3.6

ClueWeb12B TREC 2006

VBMW-T 3.6 9.35 17.42 27.17 70.21 24.51

MaxScore-T 4.75 7.47 11.35 15.09 26.09 12.63

Max-Inter-x2 3.46 5.93 9.78 12.7 24.55 10.99

Max-Inter-x5 3.07 5.67 9.13 11.14 22.85 10.13

Max-Inter-x10 2.81 5.14 8.09 10.54 21.33 9.34

Max-Inter-x15 2.63 4.8 7.74 9.85 20.98 8.96

Max-Inter-x20 2.75 4.56 7.2 9.59 20.91 8.74
Max-Inter-All 1.75 2.65 4.5 5.84 14.82 5.72
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